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Introduction 

Genetic evaluations produce estimated progeny differences (EPD) for traits using data 

largely generated by the seedstock sector of the beef industry. Some of these traits target 

economically relevant traits (ERT). By definition, true ERT are measured within the commercial 

sectors. Thus, the EPD produced using seedstock data are either for “presumed” ERT or 

indicator traits. Millions of records that represent the true ERT are recorded within the 

commercial industry every year. However, these records rarely make it into genetic evaluations 

because relationships that tie the commercial animals to the seedstock selection candidates are 

missing. Relationships between these groups exist, but pedigree information is often missing or 

incomplete. All commercial animals with records could be genotyped in order to estimate 

relationships, but this would not be economical. Nonetheless, inclusion of commercial data has 

enormous potential to increase the response to selection for traits that are economically important 

to the beef industry including feedlot performance, reproductive longevity, disease resistance, 

and carcass merit. An optimal solution would be to collect the true ERT from commercial herds 

and estimate relationships between commercial animals and seedstock animals in an economical 

manner for use in genetic evaluations. 

 

Review of Literature 

Economically relevant traits 

 Economically relevant traits are traits that directly affect the profitability of a commercial 

system because they relate to either a cost or source of income (Golden et al., 2000). Examples 

of ERT include, but are not limited to, weight at time of sale (e.g. weaning weight direct, 

weaning weight maternal, carcass weight, salvage cow weight), calving ease, maintenance feed 

requirement, stayability, heifer pregnancy rate, tenderness, and days to finish (e.g. Golden et al., 

2000). Enterprises may only identify a subset of these traits as ERT, which is specific to the 

production system. Take for example a producer who sells calves at weaning, and the price is 

determined by weight. An obvious ERT in this system would be weaning weight. However, if 



another producer determines profit based on carcass weight, weaning weight is no longer an 

ERT, but could be indicative of carcass weight. Thus, not all traits that are recorded directly 

affect profitability, but are instead considered indicator traits of the ERT. These indicator traits 

are genetically correlated with the ERT. In the latter example, the ERT would be carcass weight 

whereas weaning weight would be considered an indicator trait.  

Even though indicator traits do not directly affect the overall profitability of an enterprise, 

they are measured because the associated ERT are hard to measure or are expressed later in life. 

Furthermore, most data collection and selection decisions usually take place in the seedstock 

sector of the beef industry (Garrick, 2018). This has resulted in the collection of phenotypes that 

are convenient and easy to validate in resulting progeny (Garrick, 2018). Because true ERT are 

only expressed in commercial animals, the data collected from seedstock animals represent 

presumed ERT. Additionally, many ERT such as disease susceptibility and survival cannot be 

collected within seedstock herds, due to increased health conditions and more rapid replacements 

rates, or there is a genetic and environmental interaction between these traits within the 

commercial and seedstock herds.    

When breeding objectives are defined and selection decisions are taken based on those 

objectives, only ERT should be included in the decision-making process. In fact, when ERT and 

indicator traits are used in combination to attain the same selection decision for one trait, the 

accuracy of that decision is decreased (Golden et al., 2009; Enns, 2013). Oftentimes, merit of an 

animal is not defined by just one trait, rather a combination of multiple traits. To combine 

multiple traits into one succinct value to inform the overall genetic merit of an animal, selection 

indices can be used in order to correctly weight the information (Hazel, 1943). When creating a 

selection index, typically two sets of traits are needed: objective traits – the ERT defined in the 

breeding objective, and selection criteria – the traits that are actually measured. Ideally, selection 

criteria would consist entirely of ERT. Sometimes these ERT are not measured or readily 

available, and so indicator traits are used as selection criteria (Ochsner et al., 2017).  

 

Current genetic evaluations 

By the year 2000, more than fifteen different EPD were produced within the national 

cattle evaluations. At that time, many of those EPD were for traits that addressed the same 

breeding goal, such as separate EPD for ultrasonically measured carcass traits and actual carcass 



traits, but often could have led to selection decisions that were in contradiction of each other 

(Golden et al., 2009). Golden et al. (2000) realized the need to incorporate indicator traits into 

the analysis of EPD for ERT during genetic evaluations and that the EPD for indicator traits 

should not be published. This strategy would have eliminated the problem of which EPD to use 

for selection decisions. Unfortunately, today not all traits published are ERT (e.g. birth weight). 

Also, the number of published traits has increased, not decreased. 

During the estimation of EPD, multivariate models are used to combine information from 

both the ERT and indicator traits. Because most phenotypes collected are from the seedstock 

industry, some indicator traits are more convenient, cheaper, or simply more practical to collect 

than the ERT. For example, ultrasound measurements from seedstock are collected more often 

than carcass data from progeny tests. The ultrasound measurements generally include 

intramuscular fat percentage, back fat thickness, and ribeye area which are indicator traits of 

carcass marbling, back fat, and ribeye area, respectively. The industry has taken a general 

consensus that ultrasound measurements of carcass traits are reliable indicators of the actual 

carcass data. Literature generally reports moderate to relatively high genetic correlations between 

the ultrasound and carcass traits (e.g. Moser et al., 1998; Reverter et al., 2000; Devitt and Wilton, 

2001; Kemp et al., 2002). This literature justifies the use of ultrasound measurements in 

seedstock animals to inform selection criteria instead of collecting only actual carcass 

measurements from progeny test individuals, in which progeny tests are expensive and time 

consuming to develop. However, Reverter et al. (2000) cautions that genetic correlations are not 

always consistent across breeds or even between sexes within breeds. The genetic correlation 

between ultrasound and carcass rib fat thickness was estimated as 0.79, 0.99, 0.87, and 0.02 for 

Angus bulls, Angus heifers, Hereford bulls, and Hereford heifers (Reverter et al., 2000). 

Although generally high, genetic correlations between ultrasound and carcass data can range, 

thus varying in the validity as adequate indicators.  

Additional indicator traits include scrotal circumference as an indicator for age at puberty 

of a sire’s daughter, which is an indicator trait for heifer pregnancy (Golden et al., 2009). Vargas 

et al. (1998) estimated the genetic correlations between scrotal circumference and age at puberty 

to be -0.31, which in this case is favorable; bulls with a larger scrotal circumference tend to have 

daughters that reach puberty earlier. However, Evans et al. (1999) and McAllister et al. (2011) 

both found the genetic correlation between scrotal circumference and heifer pregnancy to be near 



zero. This suggests scrotal circumference is not a reliable indicator of the ERT heifer pregnancy. 

Therefore, heifer pregnancy phenotypes should be reported for genetic evaluations.  

Many traits have a large economic impact within the cattle industry but do not have a 

breed-wide EPD associated with them. One of these traits is bovine respiratory disease (BRD), 

which has a large economic impact in the feedlot sector (Snowder et al., 2006). Griffin (1997) 

estimated BRD accounts for approximately 7% of the total production cost from weaning until 

the animal is received at the packer. When included in a terminal index, BRD morbidity had an 

economic value 10.65 times greater than days to finish (Buchanan et al., 2016). Hot carcass 

weight was the only other trait in the index to have a greater economic value than BRD 

morbidity; hot carcass weight was 11.47 times more important than days to finish (Buchanan et 

al., 2016). Other traits included in the index were yield grade, marbling, dry matter intake, and 

weaning weight. In regards to the lack of collection of disease susceptibility in seedstock or 

nucleus herds, this is especially true in the swine and poultry industries where nucleus herds are 

under strict bio-security measures (Ibañez-Escriche and Gonzalez-Recio, 2011). Although beef 

seedstock herds are not under such strict bio-security measures, true collection of disease 

phenotypes would mean introducing the pathogen of interest into seedstock herds, which is 

undesirable for breeding stock (Garrick, 2018). 

Not only are many of the traits that represent the true economic drivers of cattle 

production such as animal health, feedlot performance, carcass merit, and female fertility not 

recorded within the seedstock herds, there can be a significant genotype by environmental 

interaction between the traits observed at the seedstock and commercial levels. Núñez-

Dominguez et al. (1993) found the correlation of genetic expression between crossbred and 

purebred performance (rPC) for growth traits averaged across progeny sired by three breeds of 

cattle (Angus, Hereford, and Polled Hereford) to be 0.93, 0.77, and 0.76 for weights at birth, 200 

days, and 365 days, respectively. Newman et al. (2002) also found rPC less than 1 for post-

weaning growth and carcass traits using progeny from five sire breeds (Angus, Hereford, 

Shorthorn, Belmont Red, and Santa Gertrudis) mated to Brahman dams. These deviations of rPC 

from 1 are likely to be caused by non-additive effects and genotype by environment interactions 

(Wei and van der Steen., 1991). Even though the difference between seedstock and commercial 

herds does not necessarily reduce to purebred and crossbred animals, it does begin to 

demonstrate the need for the utilization of commercial phenotypes within genetic evaluations.  



Given the genetic correlations between indicator traits and the associated ERT are not 

one, data from the indicator traits do not explain all variation of the ERT. Thus, collection and 

utilization of ERT phenotypes in genetic evaluations would aid in faster genetic response. 

Millions of true ERT records (disease incidence, female fertility, growth traits, and carcass traits) 

are collected within the commercial sectors - cow/calf herds, feedlots, and packing plants - every 

year. However, most of this data does not make it into the genetic evaluations. This is simply 

because relationships are needed in order to connect information from family members’ 

performance. There are pedigree ties between seedstock and commercial individuals, but they are 

often not known for a variety of reasons. Sometimes pedigrees are not recorded, group mating 

leads to unknown parentage, or pedigree information does not follow the animals as they move 

along into different segments of the industry. Relationships could be estimated using genomics, 

but that would require every animal with a record to be genotyped. This is not an economical 

option, even as genotyping costs have decreased. Therefore, most of the phenotypes we are truly 

interested in are not included in the genetic evaluations.  

 

Use of genomics in evaluations 

Traditionally, relationships between individuals are quantified using pedigrees, which are 

then summarized by a numerator relationship matrix (A). These are the expected relationships 

between two individuals. For example, a parent and offspring are expected to share one-half of 

their genome while a grandparent-offspring relationship is expected to be one-quarter. This 

relationship matrix would then be used in BLUP evaluations, leading to estimates deemed as 

“traditional EPD”.  Assume observations are modeled by y = 𝐗b + 𝐙u + e where y is a vector of 

observations, b is a vector of fixed effects, u is a vector of random genetic effects, 𝐗 and 𝐙 are 

incidence matrices, and e is a vector of random residuals. The solutions for the fixed and random 

effects can be obtained by solving 

[𝐗
′𝐑−𝟏𝐗 𝐗′𝐑−𝟏𝐙

𝐙′𝐑−𝟏𝐗 𝐙′𝐑−𝟏𝐙 + 𝐆−𝟏] [
b
u
] = [

𝐗′𝐑−𝟏y

𝐙′𝐑−𝟏y
]. 

It is also assumed that V(u) = 𝐆 = 𝐀σa
2 and V(e) = 𝐑 = 𝐈σe

2. Substituting in these variances and 

multiplying by σe
2 throughout leads to  

[
𝐗′𝐗 𝐗′𝐙
𝐙′𝐗 𝐙′𝐙 + λ𝐀−𝟏] [

b
u
] = [

𝐗′y

𝐙′y
] 



where λ is equal to 
σe
2

σa
2.  

When pedigree relationships are unknown, or even when the pedigree relationships are 

known, genomic relationships can be estimated between genotyped individuals. The genomic 

relationships can be calculated as the covariance of the genetic effects of two individuals, where 

the genetic effects are measured as the genotypes of the individuals. The resulting genomic 

relationship matrix (G) can be easily substituted into BLUP evaluations, resulting in genomic 

best linear unbiased predictions (GBLUP) in which the random genetic effects are now genomic 

EBV (GEBV). With the inclusion of G instead of A, V(u) = 𝐆 = 𝐆σg
2, and λ is equal to 

σe
2

σg
2. The 

assumptions of GBLUP are an infinitesimal model, meaning that there a very large number of 

loci each with small effects that influence a quantitative trait. It is known that realized 

relationships can deviate from the expected relationships due to Mendelian sampling. Because 

the G matrix can partially account for Mendelian sampling and pedigrees are oftentimes missing 

or incorrect, genomic relationships provide more accurate estimates of relationship and thus 

increased accuracy of EBV (Hayes et al., 2009). 

 Previously, genotyped and non-genotyped animals were not included in the same 

prediction because methods did not exist to combine all the information into one relationship 

matrix for use in BLUP. Use of single-step GBLUP (ssGBLUP) combines phenotypic 

information as well as genotypic and pedigree-based relationships into one fluid step in order to 

estimate GEBV. During this process, the A and G matrices are combined in order to estimate the 

relationship matrix H (Aguilar et al., 2010; Christensen and Lund, 2010). Just as before, the 

matrix H can be easily substituted into the BLUP evaluations, and the random genetic effects are 

again GEBV. Single-step GBLUP would be an optimal approach to combine commercial 

phenotypes into the genetic evaluations if the commercial cattle either had a pedigree tying them 

to seedstock relatives or were genotyped. Given pedigree ties are often missing and genotyping 

all commercial animals is cost prohibitive, an extension of the previously described methods is 

needed to allow for the use of this wealth of  commercial information in genetic evaluations.  

 

Pooling for GWAS 

 Genome wide association studies (GWAS) are used in order to discover genetic 

variations that are associated with traits. These studies typically require a large number of 



individuals to be genotyped, which can often be in the hundreds or thousands (Huang et al., 

2010). Genotyping these large sample sizes can be one of the major limitations of this research 

even as the cost of genotyping has decreased over the years. However, pooling DNA for GWAS 

has been shown to reduce the cost associated with genotyping (Sham et al., 2002). This is done 

by selectively grouping animals based on a phenotype and then genotyping a combined pool of 

DNA (Darvasi and Soller, 1992).  

Many studies have identified candidate quantitative trait loci through pooling DNA in 

humans and livestock alike. Huang et al. (2010) used pools of Holstein cattle that exhibited high 

and low blastocyst rate or fertilization rate. A total of 589 and 571 samples were available for 

fertilization and blastocyst rate, respectively. Two pools each of high and low rate were 

constructed for each phenotype, where pool sizes ranged in size from 42 to 49 animals.  When 

testing the association between allelic frequencies and blastocyst rate or fertilization rate, 22 and 

5 SNP were found significant, respectively. Results were validated with individual genotypes 

and found only six of the previously significant SNP were insignificant (P-value > 0.10). 

Importantly, the signs of the allelic effects were the same between the pooled and individual 

samples. Many other studies have also shown the use of pooled DNA for GWAS including low 

reproductive cattle with the presence of SNP mapped to the Y chromosome (McDaneld et al., 

2012) and somatic cell score in Valdostana Red Pied cattle (Strillacci et al., 2014). These studies 

clearly demonstrate the power of pooled DNA testing and their ability to genotype a fraction of 

samples that would otherwise be needed for individual testing. 

 

Pooling for genetic prediction 

 Pooled data for prediction has also been used in a variety of ways. Olson et al. (2006) 

investigated the use of pooled phenotypes and their effects on prediction accuracy using 

simulated data. Work such as this is practical when the phenotype of interest is inherently 

measured on a group or pen level or when group phenotypes are more cost effective than 

individual phenotypes. Several other studies have also investigated the use of pooled phenotypes 

for prediction in simulation and with real data sets. For example, Biscarini et al. (2008) used total 

body weight and total egg production in laying hens in cages of four, Biscarini et al. (2010) 

looked at total early egg production in laying hens in cages of four, Cooper et al. (2010) explored 

total pen intake with steers in pens of six to nine, and Su et al. (2018) used simulation with 



varying group sizes from three to thirty. One of the major drawbacks of these studies was that all 

animals within the group or pen must be identified and connected to other animals with a 

pedigree. Additionally, results showed that pooled observations led to lower accuracies than 

when individual data was available and utilized (Biscarini et al., 2008; Cooper et al., 2010; Olson 

et al., 2006; Su et al., 2018). Nonetheless, pooled phenotypes could be effectively utilized in 

evaluations. 

As seen previously, when pedigree information is not known, relationships can be 

derived through the use of genomics. Just as with GWAS, even as genotyping has become 

cheaper over the years, it still not economical to genotype every commercial animal we would 

like to include into the genetic evaluations. Recently, the innovative approach of using pooled 

phenotypic and genotypic data has been used for genetic prediction.  Reverter et al. (2016) 

performed DNA testing on a group of animals based on results of a pregnancy test, and created a 

“hybrid” genomic relationship matrix (h-GRM) consisting of pooled and non-pooled animals. 

Genotypes of the pooled animals were given as the B-allele frequencies rather than traditional 0, 

1, or 2 for AA, AB, or BB genotypes, respectively. It was concluded that the pooled genomic 

data can provide estimates of relationships with individual bulls currently in the herd or 

previously used, and the resulting h-GRM can be used to calculate GEBVs incorporating data 

from pooled, commercial level herds. Sheep were pooled based on dag scoreds and sex, and 

pooled DNA was used in order to estimate an h-GRM (Bell et al., 2017). Contributions of sires 

to each pool were estimated using simple linear regression and were shown to be equivalent to 

the GEBV that were estimated using GBLUP (Bell et al., 2017). Alexandre et al. (2019) 

simulated two traits and pooled animals based on trait one, trait two, a combination of both traits, 

or randomly and estimated the prediction accuracies of both traits. The highest prediction 

accuracy of a trait resulted from pooling based on the trait itself and lowest when the pools were 

constructed randomly.  

A concern with pooled DNA is the addition of pool construction and genotyping errors. 

Kuehn et al. (2018) investigated the efficiency of estimated genomic relationship of pools to the 

animals contained in the pools and other potentially related individuals. It was found that the 

technical error, the error associated with genotyping the intensity of the florescent dye used to 

estimate the B-allele frequencies, provided a minimal contribution to the total pooled error. 

Additionally, it was suggested that large pools be utilized because they are less prone to pool 



construction error – the planned representation of individual DNA to the pool. Thus, if large 

pools are used, minor errors in pooling allelic frequency can be assumed small. Kuehn et al. 

(2018) suggested pool sizes of at least 20. On the other hand, Alexandre et al. (2019) suggested 

pool sizes of 10 in order to retain prediction accuracy and save on the cost of genotyping. 

 

Conclusions and Implications to Genetic Improvement of Beef Cattle  

Traditionally, most phenotypes included in genetic evaluations have been collected 

within the seedstock sector of the industry. This strategy is not optimal because the traits 

collected are often indicator traits, not the traits that drive the profitability of the commercial 

industry. Even though statistical models can combine information from ERT and genetically 

correlated indicator traits, accuracy of the EPD would be higher if the ERT were directly 

measured. Given that it is less practical or less informative to measure some traits in seedstock, 

such as disease susceptibility, or there could be a considerable amount of genotype by 

environment interaction between seedstock commercial herds, it would be optimal to include the 

true ERT from the commercial herds. The needed phenotypes from the commercial sectors exist 

and are even collected, however this valuable information rarely enters genetic evaluations. This 

is because pedigree ties are lost as animals move through the industry. Genotyping could be used 

to resurrect the needed relationships, but this would require every animal that has a record to be 

genotyped. Economically, this does not make sense. 

The use of pooling genotypes and phenotypes has the potential to reduce genotyping 

costs while simultaneously including thousands of records into genetic evaluations. Sires could 

then be evaluated for direct measurements of true ERT that are collected at the commercial level. 

This would aid in the evaluation of traits that are hard to collect or are not observed in seedstock 

herds. Therefore, there is potential for additional genetic response in the traits that drive the 

economics of the beef industry.  

Research has been conducted within the realm of using pooled phenotypes for prediction. 

However, this research has required that pedigrees, even for the pooled individuals, be available. 

Other research has explored the use of pooled genotypes and phenotypes for prediction. These 

methods leave out other valuable information, the records and animals that are pedigreed but not 

genotyped. Pooled phenotypes and genotypes from commercial animals combined with current 



single-step genomic prediction methodology may be a reasonable way to combine all available 

information with one evaluation in cost effective manner.  
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