

Introduction

- Heat dissipation in cattle
 - Evaporative cooling
 - Many factors (Blackshaw and Blackshaw, 1994)

 - Humidity, temperature, wind speed
 Physiological

 - Respiration rate, sweat gland activity
- Length

Heat Stress

- When temperature and humidity exceed animal's thermal neutral zone
 - Evaporative cooling decreases
 - Water from sweat or sweat vapor trapped between hair follicles, expend more energy for thermoregulation (Finch, 1985)
 - Decrease performanceReproduction

	16	:111					ımi eption l		y II	lue	ZΧ	
Temp., °F							lumidity					
. ср.,	30	35	40	45	50	55	60	65	70	75	80	8
100	84	85	86	87	88	90	91	92	93	94	95	9
98	83	84	85	86	87	88	89	90	91	93	94	
96	81	82	83	85	86	87	88	89	90	91	92	9
94	80	81	82	83	84	85	86	87	88	89	90	
92	79	80	81	82	83	84	85	85	86	87	88	1
90	78	79	79	80	81	82	83	84	85	86	86	
88	76	77	78	79	80	81	81	82	83	84	85	1
86	75	76	77	78	78	79	80	81	81	82	83	
84	74	75	75	76	77	78	78	79	80	80	81	
82	73	73	74	75	75	76	77	77	78	79	79	
80	72	72	73	73	74	75	75	76	76	77	78	
78	70	71	71	72	73	73	74	74	75	75	76	
76	69	70	70	71	71	72	72	73	73	74	74	
	Normal <74		Alert 75 to 78		Danger 79 to 83			Emergency >8				

Heat Stress

- Southeast region of the U.S.
 - Subtropical environment
 - Many breeds or breed types

 - Long hair coats
- Shedding ability?
 - Perception of cows that do not shed
 - Grazing shorter shade or ponds
 - Late shedding = inferior dams with poor performing calves

Objectives

- Develop a method to assess hair coat shedding in purebred Angus cattle
- Determine how much variation exists for hair shedding
- Estimate effects on adjusted 205 day weight and body condition scores

Materials and Methods

- Data collected 2007, 2008, and 2009
- 532 purebred Angus cows with calves

 - 2 to 13 yrs
 Locations
 North Carolina State Upper Piedmont Research Station (UPRS)
 Wild-type endophyte-infected tall fescue
 Calving season (Nov Dec)
 Mississippi Leveck Animal Research Center (MSU), Okolona, Winona
 Warm-season mixed grasses, annual ryegrass, non-toxic endophyte-infected tall fescue
 Calving season (Sep Nov, Jan March)

Materials and Methods

- Visual hair shedding scores
 - March to July (30-d intervals, 5 scores)

Hair Shedding Score	Definition
5	Full winter coat
4	Coat exhibits initial shedding
3	Coat is halfway shed
2	Coat is mostly shed
1	Slick, short summer coat

Materials and Methods

- Cow Data
 - Grouped into 5 categories based on month of shedding (month of first shedding = MFS)
 Considered shedding when scored a 3 or less
 BCS at weaning
- Calf Data

 - Calves weaned at approximately 6 months of age
 Adjusted weaning weight (d205wt) considered to be a trait of the cow

Materials and Methods

- Statistical Analysis
 - Phenotypic analysis (d205wt and BCS)

 - - Same as first model except Adapted Scores (AS) replaced MFS
 AS criteria as follows

 » Adapted with an MFS of March, April, or May

 » Unadapted with an MFS of June or July

Materials and Methods

- Statistical Analysis
 - Genetic analysis (d205wt and AS)
 - Variance components estimated using THRGIBBS2F90 program

 - Random effects of cow and a permanent environmental effect were included
- BCS was not significant and excluded from the analysis

LS Means differences of adjusted weaning weights for MFS Difference (lbs) Standard Error Pr > |t| 6.85 March – May 10.2 7.85 0.19 8.52 March - June 19.2 0.02 March - July 45.9 10.11 0.01 April – May April – June 11.31 7.91 0.15 April – July 38.0 9.50 0.01 May – June 9.0 6.95 0.20 May – July 38.0 9.50 0.01 June – July 7.93 0.01

AS Shed by May	d205wt (lbs)	Standard Error 5.6
Shed after May	565	6.8
Contrast	Difference (lbs)	Standard Error Pr > t

Heritabilities and Genetic Correlation

	d205wt	AS
d205wt	0.27	
AS	-0.50	0.35

Conclusions

- Evidence that cows that shed later in the season wean lighter calves – more numbers
- Cows can be evaluated in late May on 1 to 5
- Hair shedding is moderately heritable
- Animals with hair coat shedding scores of 4 or 5 could be considered for culling

Other Explanations

- Does earlier shedding cause heavier weaning
 - Prolactin concentrations
 - Associated with lactation
 - Influences hair regression regulation

 - TemperatureRate of shedding

Acknowledgements

- Dr. Joe Cassidy and Kent Gray (PhD candidate), North Carolina State
- Dr. Jane Parish, Mississippi State University
- Cooperators
- American Angus Association

