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Abstract 

The past few years have led to a rapid increase in the use of molecular genetic technologies in 
the beef industry.  With any new technological advance, the methods for implementation must be 
characterized and tested in populations of beef cattle.  Recently, large panels of single nucleotide 
polymorphism (SNP) markers have become available and a multitude of animals have been 
genotyped.  The best use of these data will likely be in the form of genomic selection, where the 
marker information is incorporated into the current system of genetic prediction and EPDs 
(expected progeny differences) will continue to be reported by the breed associations.  Genomic 
selection methods will be exceptionally valuable for traits that are difficult and expensive to 
measure (such as residual feed intake, or RFI) or that are measured late in life (such as 
longevity/stayability).  One method to utilize information from reduced marker panels is to 
utilize genomic relationship matrices (GRMs) in place of traditional pedigree-derived 
relationship matrices in genetic evaluation.  Traditional pedigree derived matrices (numerator 
relationship matrices, NRM) contain a number for each pair of animals describing the average 
proportion of DNA two animals share identical by descent, or their “relatedness”.  The data in a 
GRM may more accurately reflect the kinship between two animals because it is calculated 
directly from genomic data.  This method is particularly useful for animals that have missing 
pedigree data, such as in populations of commercial cattle.  We used a GRM to test genomic 
selection for feed efficiency traits, quantified the number of markers needed to calculate a GRM, 
performed a genome scan for regions influencing feed efficiency and tested model predicted feed 
intakes against individual feed intake data in a commercial Angus cattle population. 

Introduction 

The beef industry has made enormous strides in improving genetic merit for 
economically relevant traits (ERTs) such as calving ease, growth and carcass quality over the last 
several decades.  Much of this improvement has been made possible by the availability of EPDs 
published by almost every purebred beef breed association (Crews, 2005), which are based on 
best linear unbiased prediction (BLUP) methods outlined by Henderson (1975).  Most of these 
ERTs focus on outputs from the production system.  However, production inputs, such as feed 
inputs, can have a significant influence on profitability and these traits have remained essentially 
unselected. 

Feed efficiency is a trait with enormous economic importance, but selection for 
efficiency has remained elusive due to the difficulty and expense of gathering phenotypic data 
(Archer et al., 1997).  In the past, increased growth rate has been selected for in the beef industry 
because growth and efficiency are correlated (Koch et al., 1963).  Because of the correlated 
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selection response, selection for increased growth rates  can result in unintended consequences 
like increases in mature size and increased maintenance requirements in the cowherd (Archer et 
al., 1999; Okine et al., 2004). 

Model predicted feed intakes from programs such as the Cornell Value Discovery System 
(CVDS; Guiroy et al., 2001) and the Decision Evaluator for the Cattle Industry (DECI; Williams 
et al., 2003a,b) have the potential to increase the number of feed efficiency observations 
produced on progeny of registered animals.  These models are designed to predict the differences 
in intake for cattle that are fed in pens by allocating the total feed fed to the entire pen to 
individual animals based on their performance for traits related to growth and carcass 
composition.  A study by Williams et al. (2006) showed high phenotypic (0.947-0.933) and 
genetic (0.97-0.99) correlations between CVDS and DECI predicted dry matter required 
(pDMR) values, so only the CVDS model was used in our study.  These model predicted intakes 
have the potential to serve as an indicator trait for feed efficiency, much the same way that 
ultrasound data are indicator traits for carcass quality and yield.  Indicator traits such as these do 
not necessarily impact revenue or risk themselves, but are easier and more cost effective to 
record and are genetically correlated with the ERT of interest (Crews, 2005).  As more records 
are obtained on an indicator or causal trait, it will become more effective to incorporate these 
data into genetic evaluation systems in the beef industry. 

Since the first national genetic evaluation in 1974 (Willham, 1993), the beef industry has 
been collecting phenotypes and incorporating them into genetic evaluation systems.  The 
incorporation of feed intake data into genetic evaluation has the potential to dramatically 
influence selection on maintenance efficiency and genomic selection has the potential to make 
the most of limited data for genetic prediction on a large number of animals using either large 
marker panels (such as the 50K or 800K chips) or smaller panels of markers associated with 
ERTs.  Genomic selection is the ability to (theoretically) select for desirable alleles at all genes 
in the genome that influence a trait by using markers spread throughout the entire genome.  This 
approach has several significant advantages over marker assisted selection.  It explains a larger 
portion of the genetic variance than a single marker, provides an easy, familiar interface (EPDs) 
and the danger suggested by Spangler et al. (2007) whereby producers select only for a few 
markers and disregard EPDs is entirely avoided. 

Feed Intake Data 

Individual feed intake records were collected for average daily feed intake (AFI), residual 
feed intake (RFI) and average daily gain (ADG) on 862 commercial Angus steers born between 
1998 and 2005 at either the Circle A Ranch (Iberia, Stockton and Huntsville, MO) and research 
farms participating in the MFA Inc. feeding trials (Thompson and Greenley, MO).  Intake data 
were collected using Calan gates (Circle A Ranch steers) or GrowSafe feeding systems (MFA 
steers, fed at the University of Missouri) and live weights were taken three times (beginning, 
mid-test and final) during the course of the feeding trial.  DNA was available for genotyping and 
analysis on 698 of the steers as no blood was collected during the first year of the trial.  
Cryopreserved semen units were obtained on 1,721 Angus AI sires born between 1956 and 2003 
that were used in artificial insemination (AI) within the United States.  These animals included 
the sires of the steer calves and their male ancestors.  Complete 62-generation pedigrees were 
provided by the American Angus Association.  Half-sib family sizes derived from sire 
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information ranged from 1 to 81 progeny.  Due to the fact that this is a population of commercial 
animals, dams were unregistered and available pedigree information was determined to be 
unreliable based on attempts to phase chromosomes and infer missing genotypes.  As not all 
maternal grandsires had been genotyped, correct parentage could not be assigned.  This 
population structure is suitable for testing methods of genomic selection on commercial 
populations. 

Data Acquisition 

Residual feed intake was calculated as the difference between observed and expected feed intake 

( ), which was predicted from the regression of average daily feed intake (AFI) on ADG and 

metabolic midweight (MMW: mid-weight0.75) as follows: 

RFI = AFI –  

 = b0 + b1ADG + b2MW0.75 

Weights were taken at three different times during the feeding trial (first day of the test, mid-test 
and end of test).  These cattle were commercially owned and the specific ration composition is 
unknown, however all of the animals within a feeding group were fed the same ration.  RFI was 
calculated individually for each feeding group and the mean R2 value for the regression models 
was 0.49. 

Genotypes were acquired using the Illumina BovineSNP50 assay and were screened for 
Mendelian inheritance to verify the accuracy of the sire pedigrees.  Genotypes for nine sires were 
found to be inconsistent with their paternal pedigree and an additional two animals were split 
embryos (identical twins), so these animals were removed from the dataset.  Quality control was 
performed for genotypes so that the minor allele frequency (MAF) was ≥0.05 and call rate was 
>95%.  Quality control constraints resulted in 41,028 SNPs being retained for analysis on 698 
steers and 1,707 AI sires.  Missing genotypes (0.58%) were imputed using fastPHASE (Scheet 
and Stephens, 2006) with Btau4.0 positions. 

Additive Effects Analysis 

A numerator relationship matrix (NRM) was generated using pedigree information on 
862 Angus steers, their dams (where available) and 34,864 identified parental ancestors.  
Variance components, breeding values and residuals were estimated using an animal model in 
the multiple trait derivative free restricted maximum likelihood (MTDFREML; Boldman et al., 
1995) program.  Convergence for models using a NRM was assumed when the variance of the -
2*log-likelihood was <1x10-12.  The model fit feeding pen as a fixed effect (year and season of 
birth were nested within pen, so only one effect was included) and breeding values and residuals 
were assumed to be uncorrelated. 
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Genomic Relationship Matrix 

The method of calculating a genomic relationship matrix (GRM) used in this analysis 
was proposed by VanRaden (2008).  It is a regression method that uses a fraction of the 
population with complete and accurate pedigree data (in the form of a NRM on those 
individuals) to calibrate the allele sharing to the expected value of the relationship matrix, in this 
case, E[G]=A.  In this dataset, the NRM was generated on 1,707 Angus AI sires with complete 
and accurate pedigree data.  Complete genotypes for 698 Angus steers and 1,707 AI sires were 
assembled into a 2,405 x 41,028 genotype matrix (M) with animals in rows and SNPs in 
columns. The elements in M are -1, 0 and 1 for AA, AB and BB genotypes, respectively.  The 
GRM was calibrated by finding the regression of the upper triangular elements of MM’ on the 
corresponding elements of A for the 1,707 AI sires only.  The estimated slope and intercept were 
used to calibrate the GRM for all 2,405 animals as: 

 

Estimates of these parameters were 9,731.9±0.65 and 15,198±7.26 for g0 and g1, respectively.  
The mean molecular inbreeding coefficient over all animals was 0.079.  We estimated variance 
components, fixed effects, breeding values and residuals using restricted maximum likelihood 
under an animal model where the NRM was replaced by the GRM.  Convergence was assumed 
on models including the GRM when heritability estimates had converged from above and below 
to three significant figures. 

Variance component estimates and heritabilities are shown in Table 1.  Estimated 
breeding values (EBVs) and residuals were retained for further analysis.  The estimated 
heritabilities (AFI 0.14; RFI 0.14; ADG 0.09) reported here were much lower than literature 
estimates (AFI 0.45; RFI 0.39; ADG 0.28; MacNeil et al., 1991; Arthur et al., 2001) and standard 
errors were fairly high, possibly due to sampling effects resulting from the small number of 
animals used in this study.  The mean accuracy for all 2,405 animals was 0.32 for AFI and RFI, 
while the mean accuracy for ADG was 0.23.  Mean accuracies for steers (NRM 0-0.46 vs GRM 
0.36-0.43) and sires of steers (NRM 0-0.45 vs 0.37-0.44) indicate that similar accuracies were 
achieved when using either the NRM or GRM in this dataset, however the GRM accuracy was 
achieved given an approximately 20% loss in phenotypic data.  This is most likely the result of 
the ability of the GRM to extract information from the genotypes related to the identity by 
descent information among the steers due to the relationships among their dams, which was 
missing in the NRM analysis.  Accuracies for the GRM analyses were lower than those 
previously reported for genomic selection (Hayes et al., 2009; VanRaden et al., 2009; VanRaden, 
2008; Schaeffer, 2006; Meuwissen et al., 2001), presumably due to the small number of animals 
with phenotypic observations and the lower heritabilities estimated in this study.   Even though 
there are limitations within this dataset, it would be possible to combine datasets from other 
Angus research populations in an effort to increase the heritability estimates and obtain more 
accurate EBVs. 
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Marker Panel Subsets 

MATLAB (The Mathworks, Natick, MA) was used to test the number of markers 
necessary to precisely estimate the GRM using the approach outlined above.  Subsets of n 
markers were randomly sampled with replacement (see Figure 1) from the full set of 41,028 
markers.  This approach ensures full representation of the entire genome within the marker 
subsets.  For each of the 50 replicates (i=1,…,50) for each subset of n markers, a GRM (Gni) was 
estimated using the regression approach proposed by VanRaden (2008).  Correlations were 
estimated between the upper triangular elements of Gni and G (the full GRM estimated from all 
available SNPs) for all 2,405 animals and between Gni and A for all 1,707 AI sires and averages 
were produced across replicates.  Mean correlation of the NRM and the full GRM was 
approximately 0.86 when considering the 1,707 Angus AI sires.  The mean correlation of the full 
GRM and the Gni exceeded 0.86 when between 1,000 and 2,500 markers were utilized for the 
calculation of the GRM.  Minimal increases in the correlation coefficients were seen when 
greater than 10,000 SNPS were included in the calculation of the GRM, which is illustrated in 
Figure 1.  Tables containing the complete correlation results for this analysis can be found in 
Rolf et al. (2010). 

It is likely that smaller panels of 384 or 1,536 markers will be utilized in the beef industry 
until genotyping costs decrease to more affordable levels for most producers.  Consequently, we 
performed 200 bootstrap replicates of 384 or 1,536 randomly sampled SNPs from the full set of 
41,028 markers.  Minimum, mean and maximum correlations between the bootstrap samples and 
the full GRM were 0.60, 0.65 and 0.68 and 0.85, 0.87 and 0.88 for 384 SNP and 1,536 SNP 
panels, respectively.  The mean correlation using 1,536 randomly sampled markers met the mean 
correlation between the NRM and full GRM, indicating that in the absence of pedigree data in 
commercial herds, a GRM constructed from a panel of 1,536 SNPs may be a viable alternative to 
calculate EBVs for genetic selection.  One potential caveat of this approach is that the panels 
used in the beef industry will not be randomly sampled SNPs, but rather panels of SNPs that are 
associated with various economically relevant traits.  The efficacy of this approach will depend 
on the distribution of linkage disequilibrium among the markers and the minor allele frequencies. 

Genome-Wide Association Analysis 

Estimated breeding values (EBVs) and residuals obtained previously from mixed model 
estimation with a GRM were utilized for genome-wide association analysis (GWAS).  Traits 
(RFI, AFI and ADG) were analyzed on 698 animals as either EBVs or phenotypes (EBV + 
residual).  The same SNP set was utilized for the GWAS analysis and included 41,028 SNP with 
an average MAF of 0.28 and an average spacing of 65.73±68.45 kb for the 39,484 autosomal and 
487 X chromosome loci.  SNP that mapped to unassigned contigs (ChrUn; n=1,057) were also 
included in the analysis. 

Multiple hypothesis testing is always an issue when performing GWAS studies, so a 
permutation analysis (Churchill and Doerge, 1994) was performed to obtain a genome-wide 
significance threshold of 0.05 to control the rate of type I error in this study.  The permutation 
analysis consisted of 10,000 dependent variable permutations per trait accompanied by a GWAS 
on the permuted dependent variable to determine the largest F-statistics obtained by chance with 
the data provided. 
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The GWAS was performed using custom code developed and implemented in MATLAB 
(MathWorks, Natik, MA) and was comprised of three steps.  The first step consisted of 
individual one-way analysis of variance (ANOVA) tests for each SNP, trait and dataset.  
Analyses using EBVs were weighted by their corresponding accuracies and fitted additive effects 
only and analyses utilizing phenotypes fit either additive effects alone or additive and dominance 
effects simultaneously.  Genotypes were coded 1, 0 or -1 for additive effects and 0, 1 or 0 for 
dominance values, corresponding to AA, AB and BB genotypes, respectively.  The second step 
included all SNPs that met or exceeded the pre-determined genome-wide significance threshold 
previously described.  These SNPs were included in a forward-selection analysis which was 
performed on a chromosome-by chromosome basis.  The SNP with the highest F-statistic was 
sequentially added to the ANOVA model for each chromosome until no more SNPs could be 
added that met or exceeded the significance threshold.  All of the SNPs selected in the 
chromosome-by-chromosome analysis were then combined into a final model to estimate the 
amount of variance explained by the selected SNPs in the third step. 

GWAS utilizing phenotypes and modeling only additive effects yielded either few or zero 
SNPs in the final analysis models for all traits.  Because of this, modeling both additive and 
nonadditive effects explained a larger portion of the phenotypic variance (AFI, 49.802%; RFI, 
25.494%; ADG, 27.093%).  As a result, any further discussion of results will pertain only to 
EBV analyses or analyses of phenotypes including both additive and dominance effects.   
Analysis of steer EBVs yielded a larger number of SNPs in the final model for RFI and ADG.  
The markers included into the final analysis for all three traits explained a fairly large portion of 
the additive genetic variance; however, because of the reduced power of this dataset, the amount 
of phenotypic variance explained was less than optimal.  To facilitate comparison of results 
between phenotype and EBV analyses, Figure 2 shows a side-by-side comparison of the regions 
of the genome detected for AFI from the analysis of both steer EBVs (presented in panel A) and 
phenotypes (presented in panel B). 

The number of SNPs included in the final analyses and the concordance between 
different traits in the analysis can be found in Tables 2 (EBV) and 3 (phenotypes).   
SNPs were considered concordant if they fell within the range of ±0.5 Mb of the position of the 
selected SNP to better account for the linkage disequilibrium in cattle populations (McKay et al., 
2007) as well as selection of SNPs that are pleiotropic or closely linked and could show 
correlated responses with one another when used in selection.  Of particular interest is the 
percentage of SNPs that were included in the final model for one trait, but also above the 
significance threshold (forward selected) for another trait.  The concordance of SNPs between 
traits was fairly consistent with the magnitude of expected genetic correlations between traits.  
Interestingly, there was a slight concordance between AFI and RFI, evidenced by the fact that in 
the EBV analysis approximately 13% of SNPs included in the RFI model were forward selected 
for ADG and 16% of SNPs in the ADG final model were forward selected in the RFI analysis.  
Similar results were also observed in the phenotypic analysis, but of a smaller magnitude.  This 
suggests that despite the phenotypic independence between RFI and ADG, genetic independence 
is not guaranteed between these two traits, as suggested by Kennedy et al. (1993).  A high 
concordance was observed between AFI and ADG in the EBV analysis (30% of SNPs in the AFI 
model and 20% of SNPs in the ADG model), which was expected based on the moderate genetic 
correlation between these two traits.  It appears to be possible to identify QTL for feed intake 
which are independent of ADG in this dataset.  Selection on only these QTL would theoretically 
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allow genetic improvement for feed efficiency without a problematic correlated response in the 
growth rate of the growing animal or in mature size in the cowherd. 

Pathway Analysis 

Even with appropriate consideration for multiple hypothesis testing, it is possible to 
select spurious SNPs in GWAS analyses.  Many previous studies of feed efficiency in beef cattle 
have used linkage analysis resulting in large confidence intervals, or the SNP positions were not 
reported.  Due to the lack of ability to accurately compare results from previous studies with 
those achieved in this study, a pathway analysis was conducted.  The purpose of the pathway 
analysis is to have a form of independent validation of the GWAS results.  If regions of the 
genome are identified that perform functions related to growth and metabolism, then it is likely 
that a real association has been discovered.  Due to the larger number of annotations of human 
genes, we mapped human annotations to the bovine genome using the UCSC genome browser.  
Because of the limited range of LD in beef cattle (McKay et al., 2007), we identified regions of 
interest surrounding the SNPs using a 1 Mb window (SNP position±0.5 Mb).  Genes within these 
regions were identified in the Database for Annotation, Visualization and Integrated Discovery 
(DAVID; Huang et al., 2009, Dennis et al., 2003) and queried against the KEGG Pathway 
Database (Kanehisa et al., 2010, 2006; Kanehisa and Goto, 2000).  Results from the KEGG 
database were summarized into global pathways and their corresponding sub-categories using 
the KEGG Atlas.  A summary of the KEGG pathway analysis findings is provided in Table 4.  
The analysis was most successful utilizing those traits with the highest heritabilities (AFI and 
RFI), suggesting that in well-powered studies with large numbers of animals and large SNP lists, 
pathway analysis is very useful.  Many of the regions detected in the GWAS appear to harbor 
genes which are involved in growth or metabolic functions (69% AFI and 85% RFI as a 
percentage of the total number of identified pathways). 

Model-Predicted Feed Intakes 

The Cornell Value Discovery System (CVDS) was used to predict the dry matter required 
(pDMR) for the 862 (698 with DNA) Angus steers used in this study using a growth and 
maintenance model.  No ration information was available, so animals were all assumed to have 
eaten a diet with an equivalent composition and nutrient density.  Pen feed intakes were obtained 
by pooling the average individual feed intakes of each animal within the pen.  Sex, growth 
promotant implant status, date on test, carcass data (ribeye muscle area, yield grade, hot carcass 
weight, fat thickness and marbling score) and weight data were input into CVDS and were used 
to specify growth and maintenance model parameters and account for composition of gain in the 
calculation of pDMR.  The phenotypic correlation between pDMR and AFI was 0.78 (p<0.0001) 
in this dataset, which is consistent with that reported by Williams et al. (0.784; 2006). 

Breeding values and residuals were estimated for pDMR on all animals using the 
previously outlined procedure.  Variance components for pDMR were 0.1648 and 4.0933 for 
additive and phenotypic variance, respectively.  Heritability was 0.04, which was lower than 
literature estimates, but consistent with the rest of the traits.   

The largest concordance between SNPs in the final model for pDMR and SNPs forward 
selected in the other analyzed traits was found between pDMR and ADG (EBV 73%, phenotypes 

109



77%).  This result was expected given the dependence of pDMR on growth data.  SNPs in the 
final model for pDMR also showed concordance with SNPs forward selected for AFI (EBV 
21%, phenotypes 22%) and RFI (EBV 15%, phenotypes 7%).  These results indicate that while 
there may be significant overlap between pDMR and ADG, the moderate concordance of these 
predicted measurements with AFI and RFI merit further exploration of this trait as an indicator 
trait in genetic selection procedures. 

Conclusions 

These data on commercial Angus steers were useful for implementing a method of 
genomic selection for feed efficiency, not only in the 698 steers with observations, but also for 
generation of EBVs with moderate accuracies on 1,707 of the most widely used Angus AI sires 
in the United States.  We suggest that studies utilizing GRM for producing breeding value 
estimates utilize at least 1,500 SNPs and preferably, 10,000 SNPs per animal.  Inclusion of 
additional SNPs into the calculation of the GRM yielded only marginal improvement over a 
GRM calculated with 10K SNPs. 

A large number of SNPs have been identified in these analyses which could be included 
in commercial marker panels for use in Angus cattle for selection on feed efficiency traits.  
These models account for large amounts of genetic (AFI 54%, RFI 62%, ADG 54% and pDMR 
56%) or phenotypic (AFI 49%, RFI 25%, ADG 27% and pDMR 30%) variation in these 
populations.  The estimates of the variance explained and the SNP effects are biased due to 
population sampling, as the SNPs most strongly associated in this population may not be 
representative of the Angus breed as a whole.  A pathway analysis was the first step towards 
validation of these SNP associations; however these studies should be repeated and compared 
using an independent population of animals to produce an unbiased estimate of the amount of 
genetic variation explained by these SNPs in feed efficiency traits. 

To the authors’ knowledge, this is the first work to examine the use of a predicted feed 
efficiency phenotype in a genome wide association analysis to compare model predictions to 
observed phenotypic records in beef cattle.  Additional comparisons of pDMR with results using 
actual feed intake data, gain and RFI in studies with larger numbers of animals and larger 
heritabilities will be essential to further explore the use of these data for genetic evaluation and 
selection decisions in commercial beef cattle populations. 
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Table 1:  Descriptive statistics and estimated variance components for NRM and GRM analyses of three 
feed efficiency traits (adapted from Rolf et al., 2010). 
 

Traita N Mean Min Max Var σ  σ  h2 

AFI 862 11.0326 6.0599 15.2116 3.0323 0.1436 0.7786 0.16 

RFI 862 0.0026 -3.3386 4.9952 0.7626 0.1147 0.4364 0.21 

ADG 862 1.5363 0.0231 2.3443 0.1077 0.000002 0.552 0.00 

AFI 698b 10.8943 6.0599 15.2116 3.1608 0.1404 0.8680 0.14 

RFI 698b -0.0201 -3.3412 4.9952 0.8255 0.0849 0.5286 0.14 

ADG 698b 1.5175 0.0231 2.2941 0.1105 0.0053 0.0528 0.09 

aAverage daily feed intake, AFI; residual feed intake, RFI; and average daily gain, ADG; all 
measured in units of kg/d. 
bDNA samples were available on only 698 of the 862 phenotyped steers. Variance 
components for these three analyses were estimated using the GRM. 

 
 
 
 
Table 2:  Number of SNPs included in the final models or above the significance threshold (Forward 
Selected) for GWAS analysis of feed efficiency EBVs.  Numbers to the right are the number and 
percentage of SNPs in the final model for the trait in the row that were above the significance threshold 
for the trait in the column. 
 

   Forward Selected 

 No. in 
Model 

No. Fwd 
Selected AFI RFI ADG 

AFI 53 178 - 37 a 
69.81% 

16 a 
30.19% 

RFI 66 281 35 a 
53.03% - 9 a 

13.64% 

ADG 68 274 14a 
20.59% 

11a 
16.18% - 
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Table 3:  Number of SNPs included in the final models or above the significance threshold (Forward 
Selected) for GWAS analysis of feed efficiency phenotypes.  Numbers to the right are the number and 
percentage of SNPs in the final model for the trait in the row that were above the significance threshold 
for the trait in the column. 
 

   Forward Selected 

 No. in 
Model 

No. 
Fwd 

Selected 
AFI RFI ADG 

AFI 65 83 - 11a 
16.92% 

3a 
4.62% 

RFI 18 21 10a 
55.56% - 1a 

5.56% 

ADG 24 33 3a 
12.50% 

3a 
12.50% - 
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Table 4:  Results from DAVID and KEGG Atlas for pathway analyses. 

Number of Pathways/No Genesa Global 
Pathway 

Sub Category  AFI 
EBVb 

AFI 
Phenb 

RFI 
EBVb 

RFI 
Phenb 

ADG 
EBVb 

ADG 
Phenb 

pDMR 
EBVb 

pDMR 
Phenb 

Carbohydrate Metabolism*          1/1    2/2   

Energy Metabolism*              1/1   

Lipid Metabolism*    3/9  4/4  2/8         

Nucleotide Metabolism*  2/2               

Amino Acid Metabolism*  1/1    4/5           

Metabolism of Other 
Amino Acids* 

    2/2           

Glycan Biosynthesis and 
Metabolism* 

    3/3    2/4    4/4   

Metabolism of Cofactors 
and Vitamins* 

  1/1             

Biosynthesis of Secondary 
Metabolites* 

  2/4  2/2  2/4         

Metabolism 

Xenobiotics Biodegradation 
and Metabolism* 

  1/4  3/3  1/4         

Translation  1/1               Genetic 
Information 
Processing 

Folding, Sorting and 
Degradation* 

2/3               

Signal Transduction*  1/2  6/12  2/4  4/5  3/3    4/4   Environmenta
l Information 
Processing 

Signaling Molecules and 
Interaction* 

  1/5      1/3    1/3   

Transport and Catabolism*      1/1           

Cell Motility      1/2    1/1       

Cell Growth and Death*  1/1  1/4  1/1  1/1         

Cell Communication    3/5  4/7  1/1      1/8   

Endocrine System*    4/6  4/5  2/2      2/2   

Immune System  1/1  5/9  3/3  1/1    1/1    1/1 

Nervous System    1/2  2/3    1/1    1/1   

Cellular 
Processes 

Development*    1/1    1/1         

Cancers*  1/1  5/8  5/5  4/4         

Neurodegenerative 
Diseases 

  3/5    1/1  2/3       

Metabolic Disorders*    2/6  1/1           

Human 
Diseases 

Infectious Diseases      1/1        2/2   
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Figure 2:  Concordance between EBV and phenotype analyses for AFI. 

Figure  1:    Correlation  between  the  Gni  estimated  from  bootstrap  samples  of  reduced marker  panels 
versus  the  full  GRM  calculated  with  all  markers  available  (n=41,028).    The  red  line  indicates  the 
correlation  between  relationship  coefficients  between  full  and  reduced  marker  sets  for  all  2,405 
animals.    The  blue  line  indicates  the  correlation  between  relationship  coefficients  between  reduced 
marker sets and the NRM for all 1,707 AI sires (adapted from Rolf et al., 2010).   
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