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Introduction 
 
Genomic information, in the form of Single Nucleotide Polymorphisms, holds the promise to not only 

suite of traits included in National Cattle Evaluations (NCE). For the most part, genomic information for 
complex traits (those controlled by many genes) is available to producers in a disjoined context in that it 
is not seamlessly integrated into EPD estimations and is published separately from EPD.  Understanding 
the benefits of the inclusion of genomic information into EPD first requires knowledge of the differences 
between an EPD and the results of genomic test (called Molecular Breeding Values or MBV).  An EPD is 
half of the summation of all the independent additive gene effects that cause variation in a given trait (half 
because each animal only passes on half of their alleles at random).  However, with an EPD the specific 
sources of variation are unknown and for some traits the collection of phenotypes is either cost prohibitive 
(i.e. tenderness) or it takes a long time to observe a record (i.e. stayability).  A MBV, on the other hand, is 
the summation of the additive SNP effects (multiplied by the number of copies of a given SNP allele) that 
have been shown through association studies to explain variation in a given trait.  SNP are not genes, but 
serve as markers.  The benefit is that DNA, and thus MBV, can be garnered early in life regardless of the 
trait. 
!
The Value of Improving Accuracy 
 
Several advancements in this technology have occurred with regard to complex traits (i.e. production, 
carcass, and reproduction traits) including the number of markers included in a given panel, reporting 
styles of the results, the number of traits for which a diagnostic test exists, and recently, the inclusion of 
this information for the first time in National Cattle Evaluation (NCE) in the Angus breed.  
 
The promise of the inclusion of marker information into EPD calculations holds three primary benefits: 

1. Increased accuracy for young animals (i.e. yearling bulls), which is particularly beneficial when 
selecting on traits that are measured late in life (e.g., stayability) 
2. Shortened generation intervals 
3. EPD values for novel traits (i.e. efficiency, end-product healthfulness, disease susceptibility) that 
may have, at best, sparse collection of phenotypes 

 
The uncertainty surrounding early predictions of genetic merit arise as a result of Mendelian sampling.  
Every animal is passed a random sample of alleles from each parent, half coming from the dam and half 
from the sire. We have an estimate of the average effect of what was passed from parent(s) to offspring in 
the form of pedigree estimates, but the certainty with which we know this estimate is correct (i.e., the 
accuracy) is low. As more information is collected, such as an individual s own record and data from 
progeny, accuracy increases. For lowly heritable traits like measures of reproduction, it can take a 
considerable number of offspring to reach high BIF accuracy levels, given that the BIF scale is more 
conservative than true accuracy (r) as illustrated in Table 1. To calculate r in the context of progeny test 
sires the following equation can be used where " is the number of progeny: 
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To convert BIF accuracy to true accuracy (r) the following equation can be used: 
 
! ! ! ! ! !         
 
 
 
 
 
Table 1. Approximate number of progeny needed to reach accuracy levels (true  (r) and the  

BIF standard) for three heritabilities (h2). 
Accuracy Heritability Levels 

r BIF h2 (0.1) h2 (0.3) h2 (0.5) 
0.1 0.01 1 1 1 
0.2 0.02 2 1 1 
0.3 0.05 4 2 1 
0.4 0.08 8 3 2 
0.5 0.13 13 5 3 
0.6 0.2 22 7 4 
0.7 0.29 38 12 7 
0.8 0.4 70 22 13 
0.9 0.56 167 53 30 

0.999 0.99 3800 1225 700 
 
 
 
 
One primary benefit of molecular information is that it can be garnered much earlier in life (before a 
phenotypic record can be collected). This knowledge can, in part, reveal a portion of the black box that is 
Mendelian sampling in young animals. This results in higher accuracy values for young animals, which 
potentially increases the use of these younger animals in seedstock systems, thus decreasing the 
generation interval.  The equation below predicts the rate of genetic change per year and is dependent on 
selection intensity, the accuracy of selection, genetic variation, and the length of the generation interval.  
From this it is apparent that if the generation interval is decreased and /or accuracy is increased this will 
lead to faster genetic change.   
 

[(Accuracy of Selection)*(Selection Intensity)*(Genetic Standard Deviation)]        Generation 
Interval 

 
However, the magnitude of these benefits will depend on the proportion of variation explained by a given 
marker panel. Without the seamless integration of this technology into EPD calculations, we find 
ourselves in the current context of being faced with two disjoined pieces of information: traditional EPD 
and marker panel results. In this scenario, it is impossible to directly compare EPD to marker panel 
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results. This is because the molecular scores only explain a portion of the additive genetic variation. 
Further, some of the marker panel results have a metric of accuracy associated with them. At the current 
time, this metric is not directly comparable to the Beef Improvement Federation (BIF) accuracy value 
associated with EPD simply due to differences in the way they are computed. Table 2 shows the 
relationship between the genetic correlation (true accuracy), %GV and BIF accuracy. 
 
Table 2.  The relationship between true accuracy (r), proportion of genetic variation explained (%GV), 

and Beef Improvement Federation (BIF) accuracy. 
r %GV BIF 

0.1 1 0.005 
0.2 4 0.020 
0.3 9 0.046 
0.4 16 0.083 
0.5 25 0.132 
0.6 36 0.200 
0.7 49 0.286 

 
In contrast to the thought process of DNA marker panel results being a separate and disjoined piece of 
information, these test results should be thought of as a potentially useful indicator that is correlated to the 
trait of interest. As such, the MBV can be included in NCE as a correlated trait following methods of 
Kachman (2008). Other methods have been proposed including using large (50,000+) SNP panels to form 
a genomic relationship matrix that could allow for known relationships between animals based on 
genotypes across SNP loci.  Combining these sources of information, molecular tools and traditional 
EPD, has the potential to allow for the benefits of increased accuracy and increased rate of genetic change 
as discussed earlier. 
 
MacNeil et al. (2010) utilized Angus field data to look at the potential benefits of including both 
ultrasound records and MBV for marbling as correlated traits in the evaluation of carcass marbling score. 
MacNeil and colleagues used a 114 SNP marker panel that was developed using 445 Angus animals and 
calculated to have a genetic correlation (r) of 0.37 with marbling (i.e. the test explained (0.37)2 = 0.137 or 
13.7% the additive genetic variation).  For animals with no ultrasound record or progeny data, the marker 
information improved the BIF accuracy of the Angus marbling EPD from 0.07 to 0.13. Assuming a 
heritability of 0.3 for marbling, a BIF accuracy of 0.13 is equivalent to having approximately 5 progeny 
carcass records on a young animal or an ultrasound record on the individual itself. In this particular study, 
both ultrasound records and MBV were found to be beneficial indicators of carcass marbling. The genetic 
correlation between MBV and ultrasound was found to be 0.80. Since the initiation of MA-EPD by AAA, 
the SNP panel has evolved and now accounts for 42% of the GV for marbling.  The amount of 
information provided by genomics to NCE will continually change as new products enter the market 
place and SNP panels are retrained overtime. 
 
Figures 1 and 2 illustrate the benefits of including a MBV into EPD (or EBV which is twice the value of 
an EPD) accuracy (on the BIF scale) when the MBV explains 10 or 40% of the genetic variation (GV), 
which is synonymous with R2 values of 0.1, and 0.4.  The darker portion of the bars shows the EPD 
accuracy before the inclusion of genomic information and the lighter colored portion shows the increase 
in accuracy after the inclusion of the MBV into the EPD calculation. As the %GV increases, the increase 
in EPD accuracy becomes larger.  Additionally, lower accuracy animals benefit more from the inclusion 
of genomic information and the benefits decline as the EPD accuracy increases.  Regardless of the %GV 
assumed here, the benefits of including genomic information into EPD dissipate when EPD accuracy is 
between 0.6 and 0.7.  On the other hand, when %GV is 40 an animal with 0 accuracy could go to over 0.2 
accuracy with genomic information alone.  From table 1, this would be the same as having approximately 
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4 progeny for a highly heritable trait or 7 progeny for a moderately heritable trait. 
 
Figure 1. Increase in accuracy from integrating genomic information that explains 10% of the genetic 
variation into Estimated Breeding Values (EBV).  

  
Figure 2. Increase in accuracy from integrating genomic information that explains 40% of the genetic 
variation into Estimated Breeding Values (EBV).  
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It is important to understand some limitations in the current application of Marker Assisted Selection. For 
instance, current marker panels are likely to work best in the populations where discovery occurred, but 
will potentially decrease in predictive power as the target population becomes more genetically distant 
from the discovery population (de Roos et al., 2008).  The same erosion in accuracy is likely to occur 
overtime as well (i.e. over generations if panels are not retrained). 
 

Discovery Target  

Angus Angus Closest relationship 
Angus Charolais  
Angus Bos indicus Most distant relationship 

 
In order to investigate the robustness of SNP predictions across breeds, a unified research and outreach 
project (called the Weight Trait Project; Spangler et al., 2011) was initiated utilizing both industry and 
academic/ARS resources. Weaning weight records (n=3,328) of calves from the US Meat Animal 
Research Center (USMARC) were used in the selection of SNP from the Bovine SNP50 associated with 
adjusted weaning weight. The total pedigree included 5,222 animals. Of the 3,328 calves in the training 
population, the average breed contributions were 26% Angus, 19% Hereford, and 6.5% each of Red 
Angus, Simmental, Charolais, Limousin, and Gelbvieh.  
 
Breed associations representing the seven breeds (Table 2) in the USMARC Cycle VII population 
identified seedstock producers in the region surrounding USMARC to provide DNA samples (tail hair) 
from calves born in 2009 and their dams. A reduced panel of 192 SNP was constructed based on the most 
significant SNP from the USMARC association analysis with the addition of 192 SNP from IGENITY® 
(96 trained on yearling weight in an Angus population and the other 96 from the IGENITY parentage 
panel).  In total, the reduced panel consisted of 384 SNP. IGENITY® served as the genetic service 
provider partner in this project and genotyped animals with the reduced panel. After editing SNP based on 
deviation from Hardy-Weinberg Equilibrium and call rates, a total of 159 of the diagnostic SNP (non 
parentage) were used in the analysis. The genotype data had an average call rate of 85.2% (11.3-100%). 
Bull calves (n=3,500) from the twenty collaborating herds were genotyped with the reduced panel and 
MBV were calculated based on prediction equations derived at USMARC for weaning weight (WW) and 
post weaning gain (PWG). Data including a four-generation pedigree, adjusted weaning weight 
phenotypes, and pedigree index EPD were obtained from the respective breed associations for each herd 
in the project.  MBV were fit as a correlated trait in both two- and three-trait animal models.  
Contemporary group effects included herd and sex of calf.  Weaning weight was fit with both a direct and 
maternal component while MBV were assumed to have only a direct genetic component.   
 
Given the partial nature of the genotypes produced by the WTP due to the newness of the genotyping 
platform used at that time, methodology was developed to account for partial genotypes in the analysis 
(Kachman et al., 2011). For animal a the proportion, Pa, of the complete genotype (CG) MBV variance 
accounted for by partial genotypes (PG) is the ratio of the variances calculated by summing over the 
partial and the complete set of markers. Similarly, the genetic covariance between a trait and PG MBV is 
also proportional to Pa. The proportion of CG covariance between animals a and b with PG was assumed 
to be proportional to PaPb. The PG model for the MBV of animal a, scales the CG genetic effect by Pa 
and adds a missing genotype effect with variance Pa(1-Pa) times the CG genetic variance.  
 
Genetic parameters for weaning weight (direct) and MBV by breed are summarized in Table 3 both 
before and after accounting for partial genotypes in the analysis. In general, the heritability estimates for 
WW direct were within expected ranges except for Simmental, which is likely due to the data structure of 
the Simmental herds in this study. In general, the genetic correlations are low to moderate with relatively 
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large standard errors.  The number of markers used in the current panel might explain the less than 
desirable performance.  Given these correlations, the proportion of genetic variation for weaning weight 
explained by the panel (rg

2) ranged from 0 to 7.8% before accounting for PG and 0.09 to 14.44% after. 
One possible reason for the range in genetic correlations among breeds is that the associations between 
markers and growth traits are more breed-specific than had been hoped.  
 
Table 3. Heritabilities (SE) by breed for weaning weight (direct) and molecular breeding values (MBV) 
for weaning weight (WW) direct both Before and After accounting for partial genotypes. 

 
Summary 
 
It is likely that the list of genetic selection tools will continue to expand in the short-term as this arena is 
far from stagnant.  Although the goal is the consolidation of information into one of two basic forms, 
EPD and economic index values, the industry has witnessed several intermediate steps in an effort to 
quickly commercialize technology that has created confusion. Integrated projects such as the WTP that 
engage researchers, extension personnel, producers, and breed associations are critical to the further 
development and employment of genomic selection tools.  The WTP has created a vast resource that 
continues to grow in order to investigate the plethora of questions that still exist related to the use of this 
technology.  
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 Heritability 
Heritability 

Molecular Breeding Value 
 

Genetic Correlation 
Breed Weaning 

Weight 
Before      After  Before  After 

Angus 0.23±0.02 0.87±0.16 0.75±0.12  0.00±0.10 0.15±0.11 
Red Angus 0.24±0.03 0.67±0.16 0.89±0.14  0.10±0.10 0.14±0.11 
Charolais 0.12±0.03 0.33±0.16 0.47±0.18  0.28±0.15 0.38±0.16 
Gelbvieh 0.22±0.02 0.64±0.18 0.62±0.16  0.25±0.13 0.26±0.14 
Hereford 0.14±0.04 0.83±0.15 0.96±0.14  0.20±0.20 0.25±0.21 
Limousin 0.27±0.02 0.60±0.19 ---  0.24±0.12 --- 
Simmental 0.75±0.03 0.61±0.16 0.73±0.16  0.05±0.08 0.03±0.09 


