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State	  of	  Genomics	  including	  an	  
update	  on	  NBCEC	  projects	  
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NaAonal	  Beef	  CaBle	  EvaluaAon	  
ConsorAum	  

•  Mission:	  Develop	  and	  implement	  improved	  
predicAons	  so	  selecAon	  can	  enhance	  
economic	  viability	  of	  US	  beef	  caBle	  producers	  
– Establish	  &	  co-‐ordinate	  prioriAes	  for	  predicAon	  
– Consolidate	  research	  efforts	  
– Streamline	  	  the	  development	  and	  adopAon	  of	  new	  
geneAc	  evaluaAon	  methodologies	  

–  IdenAfy	  new	  traits	  &	  technologies	  
– Create	  decision-‐making	  tools	  

NBCEC	  

•  Funded	  for	  10	  years	  (to	  2012)	  by	  a	  Special	  
Grant	  to	  Cornell	  University	  on	  behalf	  of	  4	  core	  
insAtuAons	  	  
– Colorado	  State,	  Iowa	  State,	  Univ	  of	  Georgia	  
–  Increasingly	  included	  other	  insAtuAons	  

•  Evolved	  to	  represent	  the	  consorAum	  of	  
researchers	  pursuing	  the	  NBCEC	  mission	  
through	  USDA,	  other	  compeAAve	  grants,	  and	  
breed	  associaAon	  funding	  	  

ImplementaAon	  of	  Genomic	  PredicAon	  

•  Major	  focus	  of	  NBCEC	  acAvity	  
•  Other	  acAviAes	  included	  extending	  the	  range	  
of	  economically	  relevant	  traits	  beyond	  growth	  
and	  carcass	  
– Animal	  Health	  
– Healthfulness	  of	  beef	  
– Feed	  Efficiency	  
– ReproducAon	  

•  All	  of	  which	  likely	  require	  genomic	  predicAon	  	  

Performance	  of	  the	  Progeny	  
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Offspring of one sire exhibit 

 more than ¾ diversity of  
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We	  learn	  about	  Parents	  from	  Progeny	  
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+10 lb Sire EPD +8-9 lb 
(EPD is “shrunk”) 
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EPDs	  on	  widely-‐used	  old	  sires	  are	  accurate	  

Sire 

Sire EPD +8-9 lb 

With enough progeny, 
 this is usually close to 

 the bulls true EPD 
(not surprisingly!) 

Chromosomes	  are	  a	  sequence	  of	  base	  pairs	  

Cattle usually have 30 pairs of chromosomes 
One member of each pair was inherited from the sire, one from the dam 
Each chromosome has about 100 million base pairs (A, G, T or C) 
About 3 billion describe the animal 

Part of 1 pair 
of chromosomes 

Blue	  base	  pairs	  represent	  genes	  

Yellow	  represents	  the	  strand	  inherited	  from	  the	  sire	  

Orange	  represents	  the	  strand	  inherited	  from	  the	  dam	  

EPD	  is	  half	  sum	  of	  the	  gene	  effects	  

Blue	  base	  pairs	  represent	  genes	  
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The EPD is half the sum of all these genetic values 
  (half because offspring inherit a random half sample 
  of each parents chromosomes) 

Sum=+2 
Sum=+8 
EPD=10/2=5 
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Consider	  3	  Bulls	  
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SNP	  Genotyping	  the	  Bulls	  
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1	  of	  50,000	  loci	  

Regress	  EPD	  on	  SNP	  genotype	  
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 Variation due to  
 other genes 

Slope = advantage of substituting 
             an A allele with a B allele 
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Genomic	  Analysis	  

•  First	  (Training)	  
– Collect	  50k	  genotypes	  on	  1,000	  or	  more	  animals	  
with	  EPDs	  

– Compute	  the	  subsAtuAon	  effects	  for	  all	  50k	  loci	  
fiBed	  at	  the	  same	  Ame	  

•  Second	  (ValidaAon	  or	  ImplementaAon)	  
– Genotype	  target	  animal	  and	  mulAply	  the	  number	  
of	  B	  alleles	  at	  each	  locus	  by	  the	  subsAtuAon	  effect	  
at	  that	  locus	  

Problems	  

•  The	  training	  analysis	  will	  virtually	  perfectly	  
predict	  the	  merit	  of	  all	  the	  animals	  in	  the	  training	  
–  But	  how	  reliable	  are	  new	  animals?	  

•  The	  training	  analysis	  would	  be	  good	  if	  the	  
markers	  were	  the	  causal	  variants	  
– Many	  markers	  maybe	  should	  not	  have	  any	  effect	  
–  Those	  that	  are	  physically	  near	  causal	  variants	  may	  or	  
may	  not	  be	  closely	  correlated	  	  
(linkage	  disequilibrium	  or	  LD	  	  measures	  the	  strength	  
of	  associaAon)	  

Cross	  ValidaAon	  

•  ParAAon	  our	  available	  data	  into	  training	  and	  
validaAon	  subsets	  
– Train	  in	  a	  large	  and	  validate	  in	  a	  small	  subset	  

– Repeat	  so	  that	  every	  animal	  is	  in	  a	  validaAon	  
– Form	  the	  subsets	  so	  close	  relaAves	  are	  always	  
together	  and	  not	  separated	  across	  training	  and	  
validaAon	  (using	  clustering	  methods	  like	  k-‐means)	  

Generally	  good	  predicAons	  in	  Angus	  
Trait	   Angus	  

(3,500)	   Igenity	   Pfizer	  

BirthWt	   0.64	   0.57	   0.51	  

WeanWt	   0.67	   0.45	   0.52	  

YearlingWt	   0.75	   0.34	   0.64	  

Milk	   0.51	   0.24	   0.32	  

Fat	   0.70	   0.50	   0.56	  

REA	   0.75	   0.58	   0.60	  

Marbling	   0.80	   0.65	   057	  

CalvEase	  (D)	   0.69	  

CalvEase	  (M)	   0.73	  

Scrotal	  Circ	   0.71	  

Angus	  predicAons	  no	  good	  in	  Red	  Angus	  

Trait	   Valida/ng	  in	  American	  
Angus	  

Valida/ng	  in	  
Red	  Angus	  

BirthWt	   0.64	   0.27	  

WeanWt	   0.67	   0.28	  

YearlingWt	   0.75	   0.23	  

Fat	   0.70	   0.21	  

REA	   0.75	   0.29	  

Marbling	   0.80	   0.21	  

CalvEase	  (D)	   0.69	   0.14	  

CalvEase	  (M)	   0.73	   0.18	  

Angus = ASREML 5-fold validation Red Angus = correlation 
Training on de-regressed EPDs Saatchi et al (GSE) 

Red Angus is more closely related to Angus than is Hereford 

Angus	  predicAons	  no	  good	  in	  Hereford	  

Gene/c	  
Correla/ons	  

Trait	  

Valida/on	  
	  in	  Hereford	  

Birthweight	   0.18	  

Weaning	  wt	   0.14	  

Yearling	  wt	   0.17	  

Milk	   0.02	  

Calving	  Ease	  D	   0.10	  

Calving	  Ease	  M	   0.19	  

Fat	   0.07	  

Marbling	   0.16	  

Ribeye	  Area	   0.06	  

Scrotal	  Circum	   0.03	  

Cannot predict across-breed using the 50k procedures that are adequate within breed 

Raw Correlations standardized for EPD accuracy 
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Hereford	  predicAons	  

Gene/c	  
Correla/ons	  

Trait	  

ASREML	  
4-‐fold	  x	  
validn	  

Birthweight	   0.43	  

Weaning	  wt	   0.32	  

Yearling	  wt	   0.30	  

MIlk	   0.22	  

Calving	  Ease	  D	   0.43	  

Calving	  Ease	  M	   0.18	  

Fat	   0.40	  

Marbling	   0.27	  

Ribeye	  Area	   0.36	  

Scrotal	  Circum	   0.28	  

Accuracy	  from	  800	  Herefords	  
Poorer	  than	  accuracy	  from	  3,500	  Angus	  
	  
Size	  of	  the	  training	  populaAon	  is	  important	  

InternaAonal	  Hereford	  Comparisons	  
Gene/c	  

Correla/ons	  
Trait	  

ASREML	  
4-‐fold	  x	  
validn	  

Raw	  Corr	  
99	  URG	  bulls	  

Raw	  Corr	  	  
75	  CDN	  bulls	  

Raw	  Corr	  	  
59	  ARG	  bulls	  
(unrelated)	  

Raw	  Corr	  	  
41	  ARG	  bulls	  
(US-‐like)	  

Birthweight	   0.43	   0.22	   0.40	   0.15	   0.24	  

Weaning	  wt	   0.32	   0.13	   0.07	   -‐0.35	   0.23	  

Yearling	  wt	   0.30	   0.03	   0.12	   -‐0.27	   0.32	  

MIlk	   0.22	   0.23	   0.09	   0.15	   -‐0.03	  

Calving	  Ease	  D	   0.43	   0.25	  

Calving	  Ease	  M	   0.18	   0.44	  

Fat	   0.40	   0.22	   0.39	   0.02	   0.10	  

Marbling	   0.27	   0.25	   0.29	   0.17	   0.35	  

Ribeye	  Area	   0.36	   0.01	   -‐0.01	   -‐0.11	   0.18	  

Scrotal	  Circum	   0.28	   0.36	   0.19	   -‐0.03	   0.10	  

Combined PanAmerican International Evaluation 

Training	  and	  valida/on:���
���

	  
	  

•  Weight	  Trait	  Project	  (WTP)	  as	  validaAon	  

•  Training	  populaAons:	  Black	  Angus,	  Limousin,	  
Hereford,	  3	  breed	  (A,	  L,	  H)	  or	  5	  breed	  mixes	  

•  Simple	  correlaAon	  use	  to	  reflect	  accuracy	  

Breed	   Training	   Valida/on	  

Black	  Angus	   2,359" 845"
Limousin	   1,655" 530"
Hereford	   891" 232"
Simmental	   102" 190"
Red	  Angus	   86" 90"

The	  Accuracies	  of	  GEBV:	  Black	  Angus���
���

	  
	  

22	  

Training	   Black	  	  
Angus	  

Limousin	   Hereford	   MIX-‐5B	  

Birth Weight	   0.66" 0.05" 0.22" 0.65 
Weaning Weight	   0.47" 0.01" 0.18" 0.47 
Yearling Weight	   0.48" 0.03" 0.22" 0.45 
Maternal Milk	   0.42" -0.06" 0.05" 0.43 
Fat Thickness	   0.44" *" 0.11" 0.45 
Calving Ease Maternal	   0.34" -0.04" 0.06" 0.34 
Calving Ease Direct	   0.58" 0.03" 0.03" 0.55 
Marbling	   0.58" -0.03" -0.06" 0.56 
Rib Eye Muscle Area	   0.45" -0.06" 0.10" 0.45 
Scrotal Circumference	   0.51" -0.04" -0.01" 0.50 

The	  Accuracies	  of	  GEBV:	  Simmental���
���

	  
	  

23	  

Training	   Black	  	  
Angus	  

Limousin	   Hereford	   MIX-‐5B	   MIX-‐3B	  

Birth Weight	   0.13 0.08 0.16 0.30 0.23 
Weaning Weight	   0.01 0.07 0.16 0.19 0.17 
Yearling Weight	   0.01 -0.06 0.15 0.31 0.19 
Maternal Milk	   0.16 -0.07 0.12 0.19 0.09 
Fat Thickness	   0.15 * 0.10 0.13 0.12 
Calving Ease Maternal	   0.06 0.02 -0.04 -0.11 -0.09 
Calving Ease Direct	   -0.09 0.01 0.09 0.10 -0.00 
Marbling	   0.08 0.05 0.18 0.26 0.18 
Rib Eye Muscle Area	   0.12 0.01 0.08 0.24 0.15 
Scrotal Circumference	   * * * * * 

The	  Accuracies	  of	  GEBV:	  Red	  Angus���
���

	  
	  Training	   Black	  	  

Angus	  
Limousin	   Hereford	   MIX-‐5B	   MIX-‐3B	  

Birth Weight	   0.22 0.16 0.31 0.53 0.35 
Weaning Weight	   0.18 0.22 0.22 0.41 0.30 
Yearling Weight	   0.23 0.33 0.22 0.47 0.39 
Maternal Milk	   * * * * * 
Fat Thickness	   0.13 * 0.00 0.16 0.01 
Calving Ease Maternal	   0.17 -0.17 -0.12 0.48 0.08 
Calving Ease Direct	   0.08 -0.06 0.32 0.50 0.21 
Marbling	   0.29 0.16 -0.10 0.33 0.24 
Rib Eye Muscle Area	   0.18 -0.25 0.03 0.26 0.10 
Scrotal Circumference	   * * * * * 

24	  
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Conclusions	  –	  pooling	  US	  breeds	  

•  Each	  breed	  needs	  its	  own	  training	  data	  

•  Pooling	  breeds	  does	  not	  improve	  accuracy	  
unless	  the	  breed	  has	  inadequate	  training	  data	  

700k	  will	  improve	  prediction	  

Holstein-‐Friesian	  	  Results	  

Correlations	   50k	   700k	   3-‐400k*	  

BayesC0.95	   BayesB.975	   BayesC.999	   BayesB.999	   BayesB.998	  

Milk	  	   0.71	   0.72	   0.71	   0.71	   0.70	  

Fat	   0.55	   0.53	   0.58	   0.58	   0.58	  

Protein	   0.54	   0.53	   0.57	   0.57	   0.57	  

*SNPs	  in	  window	  with	  <0.01%	  variance	  removed	  
For	  fat,	  all	  SNP	  never	  accepted	  also	  rejected	  

Training	  in	  a	  mixed	  breed	  dataset.	  	  Validating	  in	  separate	  breeds	  from	  next	  generation	  

Jersey	  Results	  

Correlations	   50k	   700k	   3-‐400k	  

BayesC0.95	   BayesB.975	   BayesC.999	   BayesB.999	   BayesB.998	  

Milk	  	   0.66	   0.66	   0.66	   0.65	   0.64	  

Fat	  	   0.62	   0.64	   0.59	   0.59	   0.59	  

Protein	   0.62	   0.61	   0.58	   0.57	   0.59	  

HFxJ	  composite	  Results	  

Correlations	   50k	   700k	   3-‐400k	  

BayesC.95	   BayesB.975	   BayesC.999	   BayesB.999	   BayesB.998	  

Milk	  -‐	  corr	   0.76	   0.75	   0.75	   0.74	   0.73	  

Fat	  -‐corr	   0.57	   0.58	   0.59	   0.59	   0.59	  

Protein-‐	  corr	   0.67	   0.66	   0.69	   0.69	   0.68	  

700k	  panels	  do	  not	  improve	  within-‐breed	  prediction	  
Composites	  tend	  to	  have	  higher	  predictive	  ability	  than	  purebreds	  

50k	  Results:	  Milk	  Volume	  

R  50k M F Fries F Jers F HFxJ 
Friesians 0.66	   0.69	   0.47	   0.58	  

Jerseys 0.65	   0.45	   0.56	   0.47	  

HFxJ 0.75	   0.66	   0.43	   0.60	  

TrainObs 3,606	   5,718	   1,287	   3,575	  

Training	  in	  males	  from	  	  the	  breed	  designated	  by	  the	  row	  
Validating	  within	  breed	  in	  next	  generation	  females	  represented	  by	  the	  column	  
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700k	  Results:	  Milk	  Volume	  

R  700k M F Fries F Jers F HFxJ 
Friesians 0.68	   0.70	   0.18	   0.59	  

Jerseys 0.65	   0.39	   0.59	   0.50	  

HFxJ 0.74	   0.65	   0.43	   0.62	  

700k	  panels	  do	  not	  improve	  across-‐breed	  prediction	  

R  50k M F Fries F Jers F HFxJ 
Friesians 0.66	   0.69	   0.47	   0.58	  

Jerseys 0.65	   0.45	   0.56	   0.47	  

HFxJ 0.75	   0.66	   0.43	   0.60	  

TrainObs 3,606	   5,718	   1,287	   3,575	  

QTL	  Detection	  

•  Probably	  going	  to	  rely	  on	  validated	  QTL	  

(ideally	  QTV)	  in	  order	  to	  predict	  across	  breed	  

1	  mb	  Window	  Results	   Page 1 of 1B99_AAA_bw_dyd.winQTL1
Printed: 3/1/12 12:16:28 PM Printed For: Dorian Garrick

 Window     #SNPs    %Var    Cum%Var    p>0   p>Average  map_pos    
     876       11     7.10     7.10   1.000     1.000      7_93
    1974       28     3.70    10.80   1.000     0.999      20_4  
    1480       22     1.34    12.14   0.990     0.852     13_58  
    2370       22     1.23    13.37   0.987     0.832     26_34
     692        9     0.92    14.29   0.727     0.564      6_29  
     493       25     0.89    16.09   0.806     0.610      4_75  
     532       26     0.79    16.88   0.901     0.569     4_114  
     280       23     0.65    17.53   0.947     0.446     2_121  
    1894       17     0.61    18.14   0.835     0.467     18_55  
     984       25     0.60    18.74   0.873     0.406      8_88  
    2268       29     0.59    19.33   0.894     0.405     24_38  
    1975       29     0.55    19.88   0.836     0.357      20_5  
    1321       28     0.54    20.43   0.803     0.370    11_100  
    1221       27     0.48    20.91   0.819     0.320      11_0  
    1136       24     0.45    21.83   0.764     0.293     10_20  
    1977       29     0.45    22.28   0.704     0.299      20_7  
    1531       21     0.42    22.70   0.735     0.262     14_25  
    2089       19     0.42    23.12   0.586     0.303     21_47  
     858       19     0.42    23.53   0.713     0.264      7_75  

Angus	  BW	  

1	  mb	  Window	  Results	  
Angus	  BW	  
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1	  mb	  Window	  Results	  
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Angus	  WW	  	  7_93	  

Birth	  Weight	  QTL	  

Chr_mb	   Angus	   Hereford	   Limousin	   Simmental	  

	  	  7_93	   7.10	   5.85	   0.02	   0.18	  

	  	  6_38	   0.39	   7.07	   5.58	   13.78	  

20_4	   3.70	   7.99	   0.07	   1.53	  

	  	  6_39	   0.08	   1.41	   0.32	   2.52	  

	  	  6_104	   0.00	   0.42	   1.25	   0.27	  

14_25	   0.42	   0.01	   0.71	   3.05	  (14_26)	  

Windows accounting for >0.3 genetic variance in >1 breed 

Percentage of Genetic Variance 
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Body	  Weight	  QTL	  
	  %g	  var	   Angus	   Hereford	   Simmental	  

ChrMb	   B	   W	   Y	   B	   W	   Y	   B	   W	   Y	  

	  	  7_93	   7.1	   1.27	   1.24	   5.85	   0.18	   1.96	   3.12	  

	  	  6_38	   0.39	   7.07	   13.78	   7.92	   19.21	  

20_4	   3.70	   1.87	   2.62	   7.99	   1.53	   2.24	   3.35	  

	  	  6_39	   1.41	   2.52	   5.64	   9.26	  

	  	  6_104	   0.42	   0.27	  

14_25	   0.42	   3.05	   0.25	   0.52	  

20_63	   12.9	  

4_24	   3.92	   0.90	  

8_77	   2.98	   1.00	  

11_49	   1.08	  

2_6	  

10_79	   0.66	   0.44	  

11_54	   0.62	   0.54	  

Note more similarity Angus & Hereford for B than for W weight 

Precision	  of	  1	  mb	  windows	  

•  Simulation	  using	  1,000	  bovine	  50k	  genotypes:	  

– Significant	  QTL	  are	  almost	  always	  real	  

– QTV	  may	  be	  1	  or	  even	  2	  Mb	  up	  or	  downstream	  

•  Real	  data	  with	  >2,000	  animals	  with	  50k	  

– Among	  4	  windows	  for	  fatty	  acids,	  3	  contain	  genes	  

known	  to	  be	  involved	  in	  FA	  metabolism	  FAS,	  SCD	  

QTL	  mapping:	  Angus	  Heifer	  Pregnancy	  Rate ���
���
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 Single SNP  
(With unmapped SNP) 

Blossoc haplotypes 
(Without original SNP) 

Blossoc haplotypes  
(With original SNP) 

Rank Window %Var P>0 Window %Var P>0 Window %Var P>0 
1 !"#!$ !%&' (%")& !"#!* )%"$ (%+'" !"#!* )%,& (%$(" 
2 !"#!& )%+" (%"() !"#!+ )%!& (%+'! !"#!+ (%$+ (%$)$ 
3 -./0#( )%,& ) !"#!& (%*+ (%&,$ !"#!& (%" (%&&! 
4 !"#!* )%($ (%!,$ !#),* (%"' (%'($ !"#!$ (%!$ (%$(' 
5 !*#,) (%'$ (%"(' !"#!$ (%,* (%+*! !#),* (%!) (%'*( 
6 !"#!+ (%+& (%!,& "#!) (%,) (%$*" !#)," (%)* (%&&! 
7 !'#,( (%*, (%!'$ !$#!+ (%)+ (%$"" !*#,) (%)" (%&'$ 
8 !#),+ (%"* (%!$' !#)," (%)+ (%&)! )(#'* (%)" (%&"( 
9 (#( (%", (%'++ !$#,( (%)+ (%+$$ !'#!* (%), (%&$$ 
10 "#!) (%,$ (%!"$ !$#,) (%)" (%$'! !'#!' (%), (%&*( 
!
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New	  Method:	  BayesN	  (nested)	  
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Need	  SNP	  in	  higher	  LD	  with	  QTL	  

•  Higher	  density	  genotyping	  

•  Using	  haplotypes	  rather	  than	  genotypes	  

•  Imputation	  of	  positional	  candidates	  

– Published	  variants	  or	  QTV	  from	  sequencing	  	  

QTL	  mapping	  results:	  Birth	  weight ���
���
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Method Rank %Var Markera  Effect EffectVar Model 
Freq 

Window 
Freq 

Gene 
Freq 

GenVar 

Single 2 3.70 !"#!$% &'()*+((% !'#,*-(&% ('))))% &% ('!!#% .')&*-(&%
   % % % % % % %
Haplotype 2 5.91 !"#!/&% )'.,*-(!% $'"(*-(!% ('(&&&% (')/"/% ('(.)% &'("*-(/%
(wo org)   !"#!/"% -/'&!*-(!% "'#/*-(!% ('(()/% (')/".% ('"(&% &',!*-(/%
   !"#!/$% -&'/!*-(!% "')/*-(!% ('(()"% (')/",% ('(&!% #'!$*-&(%
   !"#!/!% -"')/*-(!% "'""*-(!% ('((#$% (')/"#% ('&&!% &'/)*-(#%
   !"#!/.% $'(!*-(!% "'#&*-(!% ('((),% (')/"/% ('((/% &'",*-()%
   !"#!/,% -$'/!*-(!% $'!$*-(!% ('(&(&% ('()#"% ('("&% .'#!*-()%
   !"#!//% -&'!&*-(!% "'&"*-(!% ('((#&% ('()/,% ('"(,% ,'.$*-()%
   !"#!/#% &'!#*+((% /'##*-(&% ('),#)% (')/""% ('$//% &'("*+((%
   % % % % % % %
Haplotype 2 5.90 !"#!/(% "'(#*-(!% "'&(*-(!% ('(()"% ('&(&% (',&&% "'(,*-(#%
(wi org)b   !"#!/&% )'##*-(!% $'"$*-(!% ('(&&,% ('&(".% ('(.)% &'()*-(/%
   !"#!/"% -$'/"*-(!% "'$&*-(!% ('(&(&% ('&(()% ('"(&% !'!,*-(#%
   !"#!/$% -"')&*-(!% "'(/*-(!% ('(()#% (')#,&% ('(&!% "'$/*-()%
   !"#!/!% -"'),*-(!% "'&.*-(!% ('(()!% (')#,&% ('&&!% &'/#*-(#%
   !"#!/.% &',$*-(!% "'./*-(!% ('(&% (')#,% ('((/% $',"*-&(%
   !"#!/,% -$'&$*-(!% "'$)*-(!% ('(&("% (')#,"% ('("&% !'&&*-()%
   !"#!//% -"'&"*-(!% &'#"*-(!% ('((#!% (')#,"% ('"(,% &'!/*-(#%
   !"#!/#% &'.(*+((% /')$*-(&% (')#!/% (')#,$% ('$//% &'(,*+((%
!

Chr_mb	   Angus	   Hereford	   Limousin	   Simmental	  

20_4	   3.70	   7.99	   0.07	   1.53	  

QTL	  mapping	  results:	  Birth	  weight ���
���

	  
	  

46	  

Method Rank %Var Markera  Effect EffectVar Model 
Freq 

Window 
Freq 

Gene 
Freq 

GenVar 

Single 154 0.08 !"!"#$ #%&'()'*$ !%"!()'*$ '%!'+&$ '%!,+-$ '%&#+$ ,%#'()'#$
   $ $ $ $ $ $ $
Haplotype 
(wo org) 

3 3.39 
!"!",!$ )-%&.()'#$ &%!"()'#$ '%'!'.$ !$ '%'#$ #%!*()',$

   !"!",*$ &%*&(/''$ &%",(/''$ !$ !$ '%'*+$ "%+#()'!$
   !"!",&$ )*%,-()'#$ *%#,()'#$ '%''+"$ !$ '%!!#$ !%.-()',$
   !"!",#$ !%!"()'&$ &%!+()'#$ '%'!!#$ !$ '%.!,$ .%*+()'-$
   !"!","$ ),%*#()'"$ *%!"()'#$ '%'',!$ !$ '%!#&$ !%..()'+$
   !"!",.$ )"%+"()'#$ &%!!()'#$ '%'!'*$ !$ '%'"!$ &%#.()',$
   !"!",-$ )!%.!()'#$ &%,+()'#$ '%'!',$ !$ '%''#$ *%!!()!'$
   $ $ $ $ $ $ $
Haplotype 3 3.20 !"!",'$ *%.+()'#$ *%**()'#$ '%''+.$ '%++,&$ '%+&!$ +%*+()'+$
(wi org)b   !"!",!$ ).%!*()'#$ *%#.()'#$ '%''+,$ '%++,&$ '%'#$ *%,"()',$
   !"!",*$ &%*&(/''$ &%"-(/''$ '%++,*$ '%++,&$ '%'*+$ "%+#()'!$
   !"!",&$ )&%##()'#$ *%&*()'#$ '%'',.$ '%++,&$ '%!!#$ *%#'()',$
   !"!",#$ !%'"()'&$ *%+!()'#$ '%'!!,$ '%++,&$ '%.!,$ "%*'()'-$
   !"!","$ )!%-#()'#$ !%,&()'#$ '%'',#$ '%++,#$ '%!#&$ -%&-()'+$
   !"!",.$ )"%"*()'#$ *%-&()'#$ '%''+,$ '%++,#$ '%'"!$ *%+,()',$
   !"!",-$ )!%*-()'#$ *%#*()'#$ '%''++$ '%++,&$ '%''#$ !%&!()!'$
!

Chr_mb	   Angus	   Hereford	   Limousin	   Simmental	  

	  	  6_38/6_39	   0.39/0.08	   7.07	   5.58	   13.78	  

Angus	  BWT	  QTL	  using	  haplotypes	  

Chr_mb	   Angus	  

	  	  7_93	   7.10	  

	  	  6_38	   0.39	  

20_4	   3.70	  

	  	  6_39	   0.08	  

	  	  6_104	   0.00	  

Compare	  BayesB	  on	  50k	  SNP	  

Future	  

•  To	  get	  improved	  predictive	  ability,	  we	  need	  

the	  volume	  of	  data	  to	  keep	  growing!	  

•  More	  animals	  with	  SNP	  genotypes	  would	  be	  

better	  than	  more	  SNP	  per	  animal	  

•  Need	  sequencing	  and	  imputation	  to	  get	  

causal	  mutations	  in	  regions	  of	  interest	  
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50k	  predictions	  alone	  
	  have	  similar	  predictive	  ability	  

to	  parent	  average	  
	  

But	  they	  are	  independent	  
sources	  and	  can	  be	  blended	  

	  

Saatchi	  et	  al	  (submitted	  GSE)	  

Implementation	  
•  ASA	  has	  now	  released	  genomic	  enhanced	  EPD	  

using	  50k	  genotypes	  

–  Incorporated	  into	  their	  national	  evaluation	  

•  AHA	  will	  be	  releasing	  genomic	  enhanced	  EPD	  

using	  50k	  genotypes	  in	  May	  

•  Some	  other	  breeds	  are	  actively	  growing	  their	  

training	  populations	  with	  plans	  to	  implement	  

Other	  NBCEC	  Projects	  

•  California	  Commercial	  Ranch	  Project	  

– Friday	  	  Genetic	  Prediction	  Committee	  (Dr	  Van	  E)	  

•  Feed	  Efficiency	  Project	  

– About	  to	  analyze	  first	  results	  from	  5,000	  animals	  

–  Includes	  what	  was	  the	  Weight	  Trait	  Project	  

•  Several	  collaborators	  applied	  for	  reproduction	  
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