State of Genomics including an update on NBCEC projects

Dorian Garrick dorian@iastate.edu

National Beef Cattle Evaluation Consortium

- Mission: Develop and implement improved predictions so selection can enhance economic viability of US beef cattle producers
 - Establish & co-ordinate priorities for prediction
 - Consolidate research efforts
 - Streamline the development and adoption of new genetic evaluation methodologies
 - Identify new traits & technologies
 - Create decision-making tools

NBCEC

- Funded for 10 years (to 2012) by a Special Grant to Cornell University on behalf of 4 core institutions
 - Colorado State, Iowa State, Univ of Georgia
 Increasingly included other institutions
- Evolved to represent the consortium of researchers pursuing the NBCEC mission through USDA, other competitive grants, and breed association funding

Implementation of Genomic Prediction

- Major focus of NBCEC activity
- Other activities included extending the range of economically relevant traits beyond growth and carcass
 - Animal Health
 - Healthfulness of beef
 - Feed Efficiency
 - Reproduction
- · All of which likely require genomic prediction

Genomic Analysis

- First (Training)
 - Collect 50k genotypes on 1,000 or more animals with EPDs
 - Compute the substitution effects for all 50k loci fitted at the same time
- Second (Validation or Implementation)

 Genotype target animal and multiply the number of B alleles at each locus by the substitution effect at that locus

Problems

- The training analysis will virtually perfectly predict the merit of all the animals in the training

 But how reliable are new animals?
- The training analysis would be good if the markers were the causal variants
 - Many markers maybe should not have any effect
 - Those that are physically near causal variants may or may not be closely correlated (linkage disequilibrium or LD measures the strength of association)

Cross Validation

- Partition our available data into training and validation subsets
 - Train in a large and validate in a small subset
 - Repeat so that every animal is in a validation
 - Form the subsets so close relatives are always together and not separated across training and validation (using clustering methods like k-means)

Generally good predictions in Angus

	Angus				
	(3,500)	Igenity	Pfizer		
BirthWt	0.64	0.57	0.51		
WeanWt	0.67	0.45	0.52		
YearlingWt	0.75	0.34	0.64		
Milk	0.51	0.24	0.32		
Fat	0.70	0.50	0.56		
REA	0.75	0.58	0.60		
Marbling	0.80	0.65	057		
CalvEase (D)	0.69				
CalvEase (M)	0.73				
Scrotal Circ	0.71				

Trait	Validating in American Angus	Validating in Red Angus
BirthWt	0.64	0.27
WeanWt	0.67	0.28
YearlingWt	0.75	0.23
Fat	0.70	0.21
REA	0.75	0.29
Marbling	0.80	0.21
CalvEase (D)	0.69	0.14
CalvEase (M)	0.73	0.18
Red Angus is mo	ore closely related to	Angus than is Here

Angus predictions no good in Hereford Raw Correlations standardized for EPD accuracy n Her Birthweight 0.18 Weaning wt 0.14 Yearling wt 0.17 Milk 0.02 Calving Ease D 0.10 Calving Ease M 0.19 Fat 0.07 Marbling 0.16 Ribeye Area 0.06 Scrotal Circum 0.03

Cannot predict across-breed using the 50k procedures that are adequate within breed

Genetic Correlations ASREML 4-fold x validn Trait 0.43 Weaning wt 0.32 Yearling wt 0.30 Milk 0.22 Calving Ease D 0.43 Calving Ease M 0.18 Fat 0.40 Marbling 0.27 Kibeye Area 0.36 Scrotal Circum 0.28		Here	eford predictions
Birthweight 0.43 Weaning wt 0.32 Yearling wt 0.30 Milk 0.22 Calving Ease D 0.43 Calving Ease M 0.18 Fat 0.40 Marbling 0.27 Ribeye Area 0.36 Scrotal Circum 0.28	Genetic Correlations Trait	ASREML 4-fold x validn	
Weaning wt 0.32 Accuracy from 800 Herefords Yearling wt 0.30 Poorer than accuracy from 3,500 Angus Milk 0.22 Size of the training population is important Calving Ease M 0.18 Size of the training population is important Fat 0.40 Marbling 0.27 Size or table Scrotal Circum 0.28	Birthweight	0.43	
Yearling wt 0.30 Poorer than accuracy from 3,500 Angus MIIk 0.22 Calving Ease D 0.43 Calving Ease M 0.18 Fat 0.40 Marbling 0.27 Ribeye Area 0.36 Scrotal Circum 0.28	Weaning wt	0.32	Accuracy from 800 Herefords
MIIk 0.22 Calving Ease D 0.43 Calving Ease M 0.18 Fat 0.40 Marbling 0.27 Ribeya Area 0.36 Scrotal Circum 0.28	Yearling wt	0.30	Poorer than accuracy from 3,500 Angus
Calving Ease D 0.43 Calving Ease M 0.18 Fat 0.40 Marbling 0.27 Ribeye Area 0.36 Scrotal Circum 0.28	Milk	0.22	Size of the training population is importan
Calving Ease M 0.18 Fat 0.40 Marbling 0.27 Ribeye Area 0.36 Scrotal Circum 0.28	Calving Ease D	0.43	Size of the training population is importan
Fat 0.40 Marbling 0.27 Ribeye Area 0.36 Scrotal Circum 0.28	Calving Ease M	0.18	
Marbling 0.27 Ribeye Area 0.36 Scrotal Circum 0.28	Fat	0.40	
Ribeye Area 0.36 Scrotal Circum 0.28	Marbling	0.27	
Scrotal Circum 0.28	Ribeye Area	0.36	
	Scrotal Circum	0.28	

Genetic Correlations Trait	ASREML 4-fold x validn	Raw Corr 99 URG bulls	Raw Corr 75 CDN bulls	Raw Corr 59 ARG bulls (unrelated)	Raw Corr 41 ARG bulls (US-like)
Birthweight	0.43	0.22	0.40	0.15	0.24
Weaning wt	0.32	0.13	0.07	-0.35	0.23
Yearling wt	0.30	0.03	0.12	-0.27	0.32
MIlk	0.22	0.23	0.09	0.15	-0.03
Calving Ease D	0.43		0.25		
Calving Ease M	0.18		0.44		
Fat	0.40	0.22	0.39	0.02	0.10
Marbling	0.27	0.25	0.29	0.17	0.35
Ribeye Area	0.36	0.01	-0.01	-0.11	0.18
Scrotal Circum	0.28	0.36	0.19	-0.03	0.10

Training and validation:

• Weight Trait Project (WTP) as validation

Breed	Training	Validation
Black Angus	2,359	845
Limousin	1,655	530
Hereford	891	232
Simmental	102	190
Red Angus	86	90

- Training populations: Black Angus, Limousin, Hereford, 3 breed (A, L, H) or 5 breed mixes
- Simple correlation use to reflect accuracy

The Accuracies of GEBV: Black Angus

Training	Black Angus	Limousin	Hereford	MIX-5B
Birth Weight	0.66	0.05	0.22	0.65
Weaning Weight	0.47	0.01	0.18	0.47
Yearling Weight	0.48	0.03	0.22	0.45
Maternal Milk	0.42	-0.06	0.05	0.43
Fat Thickness	0.44	*	0.11	0.45
Calving Ease Maternal	0.34	-0.04	0.06	0.34
Calving Ease Direct	0.58	0.03	0.03	0.55
Marbling	0.58	-0.03	-0.06	0.56
Rib Eye Muscle Area	0.45	-0.06	0.10	0.45
Scrotal Circumference	0.51	-0.04	-0.01	0.50
				22

Training	Black Angus	Limousin	Hereford	MIX-5B	MIX-3B
Birth Weight	0.13	0.08	0.16	0.30	0.23
Weaning Weight	0.01	0.07	0.16	0.19	0.17
Yearling Weight	0.01	-0.06	0.15	0.31	0.19
Maternal Milk	0.16	-0.07	0.12	0.19	0.09
Fat Thickness	0.15	*	0.10	0.13	0.12
Calving Ease Maternal	0.06	0.02	-0.04	-0.11	-0.09
Calving Ease Direct	-0.09	0.01	0.09	0.10	-0.00
Marbling	0.08	0.05	0.18	0.26	0.18
Rib Eye Muscle Area	0.12	0.01	0.08	0.24	0.15
Scrotal Circumference	*	*	*	*	*

The Accuracies of GEBV: Simmental

The Accuracies of GEBV: Red Angus

Training	Black	Limousin	Hereford	MIX-5B	MIX-3B
	Angus				
Birth Weight	0.22	0.16	0.31	0.53	0.35
Weaning Weight	0.18	0.22	0.22	0.41	0.30
Yearling Weight	0.23	0.33	0.22	0.47	0.39
Maternal Milk	*	*	*	*	*
Fat Thickness	0.13	*	0.00	0.16	0.01
Calving Ease Maternal	0.17	-0.17	-0.12	0.48	0.08
Calving Ease Direct	0.08	-0.06	0.32	0.50	0.21
Marbling	0.29	0.16	-0.10	0.33	0.24
Rib Eye Muscle Area	0.18	-0.25	0.03	0.26	0.10
Scrotal Circumference	*	*	*	*	*
					24

Conclusions – pooling US breeds

- Each breed needs its own training data
- Pooling breeds does not improve accuracy unless the breed has inadequate training data

700k will improve prediction

Correlations	50	k	70	ok	3-400k*
	BayesCo.95	BayesB.975	BayesC.999	BayesB.999	BayesB.998
Milk	0.71	0.72	0.71	0.71	0.70
Fat	0.55	0.53	0.58	0.58	0.58
Protein	0.54	0.53	0.57	0.57	0.57
Training in a	mixed breed da	ataset. Validat *SNPs i For fat,	ing in separate n window with all SNP never a	breeds from n <0.01% varian ccepted also re	ext generation ce removed ejected

Jersey Results								
Correlations	50	ok	70	ok	3-400k			
	BayesCo.95	BayesB.975	BayesC.999	BayesB.999	BayesB.998			
Milk	0.66	0.66	0.66	0.65	0.64			
Fat	0.62	0.64	0.59	0.59	0.59			
Protein	0.62	0.61	0.58	0.57	0.59			

OOK RESUITS: MIIK VOIUME							
R 50k	М	F Fries	F Jers	F HFxJ			
Friesians	0.66	0.69	0.47	0.58			
Jerseys	0.65	0.45	0.56	0.47			
HFxJ	0.75	0.66	0.43	0.60			
TrainObs	3,606	5,718	1,287	3,575			
R 700k	М	F Fries	F Jers	F HFxJ			
Friesians	0.68	0.70	0.18	0.59			
Jerseys	0.65	0.39	0.59	0.50			
HFxJ	0.74	0.65	0.43	0.62			

QTL Detection

 Probably going to rely on validated QTL (ideally QTV) in order to predict across breed

rinted: 3	/1/12 12:	16:28 PM	mac				Printed For: D
Ngus BW Window	#SNDs	&Var	Cum&Var	n>0	n>äverage	man nos	
876	11	7.10	7.10	1.000	1.000	7 93	
1974	28	3 70	10.80	1 000	0 999	20 4	
1480	22	1.34	12.14	0.990	0.852	13 58	
2370	22	1.23	13.37	0.987	0.832	26 34	
692		0.92	14.29	0.727	0.564	6 29	
493	25	0.89	16.09	0.806	0.610	4 75	
532	26	0.79	16.88	0.901	0.569	4 114	
280	23	0.65	17.53	0.947	0.446	2 121	
1894	17	0.61	18.14	0.835	0.467	18 55	
984	25	0.60	18.74	0.873	0.406	8 88	
2268	29	0.59	19.33	0.894	0.405	24 38	
1975	29	0.55	19.88	0.836	0.357	20 5	
1321	28	0.54	20.43	0.803	0.370	11 100	
1221	27	0.48	20.91	0.819	0.320	11 0	
1136	24	0.45	21.83	0.764	0.293	10 20	
1977	29	0.45	22.28	0.704	0.299	20 7	
1531	21	0.42	22.70	0.735	0.262	14 25	
2089	19	0.42	23.12	0.586	0.303	21 47	
858	19	0.42	23.53	0.713	0.264	7 75	

		Percentage	of Genetic V	ariance
Chr_mb	Angus	Hereford	Limousin	Simmental
7_93	7.10	5.85	0.02	0.18
6_38	0.39	7.07	5.58	13.78
20_4	3.70	7.99	0.07	1.53
6_39	0.08	1.41	0.32	2.52
6_104	0.00	0.42	1.25	0.27
14_25	0.42	0.01	0.71	3.05 (14_26)

	Body We					nt	QTI	_	
%g	var	Angus		ŀ	lereford		S	imment	al
Chri	vib B	W	Y	В	W	Y	В	W	Y
7_9	93 7.1	1.27	1.24	5.85			0.18	1.96	3.12
6_3	38 0.39			7.07			13.78	7.92	19.21
20_4	4 3.70	1.87	2.62	7.99			1.53	2.24	3.35
6_3	39			1.41			2.52	5.64	9.26
6_3	L04			0.42			0.27		
14_2	25 0.42						3.05	0.25	0.52
20_0	53				12.9				
4_2	4				3.92	0.90			
8_7	7				2.98	1.00			
11_4	49				1.08				
2_6									
10_	79	0.66	0.44						
11_	54	0.62	0.54						
lote mo	ore sim	ilarity	Ang	us & I	Heref	ord	for B	than	for W

Precision of 1 mb windows

- Simulation using 1,000 bovine 50k genotypes:
 - Significant QTL are almost always real
 - QTV may be 1 or even 2 Mb up or downstream
- Real data with >2,000 animals with 50k
 - Among 4 windows for fatty acids, 3 contain genes known to be involved in FA metabolism FAS, SCD

Need SNP in higher LD with QTL

- Higher density genotyping
- Using haplotypes rather than genotypes
- Imputation of positional candidates
 - Published variants or QTV from sequencing

Method	Rank	%Var	Marker ^a	Effect	EffectVar	Model	Window	Gene	GenVar
Single	2	2 70	43943	1.005+00	4 965 01	Freq	Freq	Freq	E 01E 01
Single	-	3.70	42043	1.031+00	4.800-01	0.5555	1	0.448	3.510-01
Haplotype	2	5.91	428471	9.56E-04	3.20E-04	0.0111	0.9727	0.059	1.02E-07
(wo org)			428472	-7.14E-04	2.87E-04	0.0097	0.9725	0.201	1.64E-07
			428473	-1.74E-04	2.97E-04	0.0092	0.9726	0.014	8.43E-10
			428474	-2.97E-04	2.22E-04	0.0083	0.9728	0.114	1.79E-08
			428475	3.04E-04	2.81E-04	0.0096	0.9727	0.007	1.26E-09
			428476	-3.74E-04	3.43E-04	0.0101	0.0982	0.021	5.84E-09
			428477	-1.41E-04	2.12E-04	0.0081	0.0976	0.206	6.53E-09
			428478	1.48E+00	7.88E-01	0.9689	0.9722	0.377	1.02E+00
Haplotype	2	5.90	428470	2.08E-04	2.10E-04	0.0092	0.101	0.611	2.06E-08
(wi org) ^b			428471	9.88E-04	3.23E-04	0.0116	0.1025	0.059	1.09E-07
			428472	-3.72E-04	2.31E-04	0.0101	0.1009	0.201	4.46E-08
			428473	-2.91E-04	2.07E-04	0.0098	0.9861	0.014	2.37E-09
			428474	-2.96E-04	2.15E-04	0.0094	0.9861	0.114	1.78E-08
			428475	1.63E-04	2.57E-04	0.01	0.986	0.007	3.62E-10
			428476	-3.13E-04	2.39E-04	0.0102	0.9862	0.021	4.11E-09
			428477	-2.12E-04	1.82E-04	0.0084	0.9862	0.206	1.47E-08

Method	Rank	%Var	Marker ^a	Effect	EffectVar	Model Frea	Window Freq	Gene	GenVar
Single	154	0.08	15154	4.30E-02	1.51E-02	0.1093	0.1897	0.349	8.40E-04
Haplotype	3	3 39							
(wo org)			151581	-7.36E-04	3.15E-04	0.0106	1	0.04	4.12E-08
			151582	3.23E+00	3.58E+00	1	1	0.029	5.94E-01
			151583	-2.87E-04	2.48E-04	0.0095	1	0.114	1.67E-08
			151584	1.15E-03	3.19E-04	0.0114	1	0.618	6.29E-07
			151585	-8.24E-05	2.15E-04	0.0081	1	0.143	1.66E-09
			151586	-5.95E-04	3.11E-04	0.0102	1	0.051	3.46E-08
			151587	-1.61E-04	3.89E-04	0.0108	1	0.004	2.11E-10
Haplotype	3	3.20	151580	2.69E-04	2.22E-04	0.0096	0.9983	0.931	9.29E-09
(wi org) ^b			151581	-6.12E-04	2.46E-04	0.0098	0.9983	0.04	2.85E-08
			151582	3.23E+00	3.57E+00	0.9982	0.9983	0.029	5.94E-01
			151583	-3.44E-04	2.32E-04	0.0086	0.9983	0.114	2.40E-08
			151584	1.05E-03	2.91E-04	0.0118	0.9983	0.618	5.20E-07
			151585	-1.74E-04	1.83E-04	0.0084	0.9984	0.143	7.37E-09
			151586	-5.52E-04	2.73E-04	0.0098	0.9984	0.051	2.98E-08
			151587	-1.27E-04	2.42E-04	0.0099	0.9983	0.004	1.31E-10

Angus	BWTQ	TL usir	ng haplo	otypes
	Baye	esB	Baye	esN
Rank	Window	%Var	Window	%Var
1	7 93	6.18	7 93	7.39
2	$2\overline{0}_{4}$	5.91	$2\overline{0}_{4}$	6.23
3	6_39	3.39	6_39	4.51
4	26_34	1.40	26_34	1.84
5	10_20	0.57	10_20	0.92
Chr_mb	Angus			
7_93	7.10			
6_38	0.39			
20_4	3.70	Compare Pa		
6_39	0.08	Compare Ba	IVESB OIT SOK SINP	
6_104	0.00			

Future

- To get improved predictive ability, we need the volume of data to keep growing!
- More animals with SNP genotypes would be better than more SNP per animal
- Need sequencing and imputation to get causal mutations in regions of interest

	_		
Trait	Limousin	Simmental	_
Birth weight	0.91	1.08	
Calving ease direct	0.81	0.76	
Calving ease maternal	0.81	0.55	
Carcass weight	0.90	1.11	sok predictions alone
Docility	0.66		have similar predictive ability
Fat thickness		0.53	to parent average
Marbling	1.05	1.15	But they are independent
Rib eye muscle area	1.02	1.10	sources and can be blended
Scrotal circumference	0.82		
Shear force		1.42	
Stayability	0.67	0.92	
Weaning weight direct	0.94	0.89	
Weaning weight maternal	0.75	0.57	
Yield grade	1.09	1.24	Saatchi et al (submitted GSE)
Yearling weight	1.30	0.77	

Implementation

• ASA has now released genomic enhanced EPD using 50k genotypes

- Incorporated into their national evaluation

- AHA will be releasing genomic enhanced EPD
 <u>using 50k genotypes in May</u>
- Some other breeds are actively growing their training populations with plans to implement

Other NBCEC Projects

- California Commercial Ranch Project
 - Friday Genetic Prediction Committee (Dr Van E)
- Feed Efficiency Project
 - About to analyze first results from 5,000 animals
 - Includes what was the Weight Trait Project
- Several collaborators applied for reproduction

Acknowledgements

- Dr Mahdi Saatchi, NBCEC postdoc who did the analyses
- Drs Rohan Fernando and Kadir Kizilkaya who helped with development of methodology
- Dr Jerry Taylor, Univ of Missouri, for collaboration over most of the Angus
 and Limousin samples, and analyses
- Drs Matt Spangler and Steve Kachman, Univ Nebraska-Lincoln, for Weight Trait Project Samples and analyses
- All the Breed Associations for providing samples and data for analysis
- Dr Richard Spelman for access to dairy sample