Exploring genomic selection with the BovineHD

What is the BovineHD?

 Illumina BovineHD Beadchip >777,000 SNP
 ~3,500 bases between SNP

 Affymetrix Axiom Genome-wide BOS-1 Array Plate >640,000 SNP

~4,200 bases between SNP

How do the HD and 50K compare?

- BovineSNP50 v1 54,001
- BovineSNP50 v2 54,609
 - 52,340 common
 - 1,661 removed
 - 2,269 added

www.animalgenome.org

What can we expect from HD genotypes?

- whole-genome QTL "fine-mapping"
 - dense genotypes eliminate some SNP discovery and re-genotyping to refine QTL identified from microsatellite and 50K scans
 - re-genotyping might focus on SNP likely to have functional effects
 - SNP mined from public databases and next-generation sequence
 - 9.5 million Bos taurus in dbSNP
 - millions more in NGS data sets

What can we expect from HD genotypes?

- higher accuracy genomic evaluations
 - genomic selection accuracy affected by linkage disequilibrium between markers and QTL, and accuracy of marker effect estimates
 - HD SNP in higher LD with unknown causative mutations
 - complicated by more SNP in LD with unknown causatives

Do we need HD on everyone?

- 50K and lower density can be imputed to HD using HD genotypes of reference animals
- 50K->HD imputation for USMARC GPE
 - 18,182 animal pedigree
 - 9,644 genotyped 950 HD, 8,694 50K
 - 2,418 sires 482 HD, 358 50K
 - 8,029 dams 143 HD, 924 50K
 - 7,739 non-parents 325 HD, 7,411 50K
 - 9,777 imputed HD (findhap.f90, Van Raden)
 - 133 ungenotyped dams imputed from genotyped progeny & mates

How accurate are imputed genotypes?

- 50K->HD in USMARC GPE
 - test using 50K of non-parents having HD genotypes
 - compared HD calls to imputed HD
 - 93% of called and imputed genotypes agree
 - individual agreement 27.4 to 98.3 %

- 89% of test animals have >90% agreement

What influences imputation accuracy?

breed composition of HD reference and 50K

Cycle VII (AN, AR, CH, GV, HH, LM, SM)

- BR+Composites (BM,BN,SG)
- new taurus breeds (BU,CG,MA,SA,SS)
- other (GPE & GPU remnants)

What influences imputation accuracy?

breed composition of HD reference and 50K

What influences imputation accuracy?

parents & grandsires in HD reference

Cycle VII and new GPE

Phenotypes		
Data set	Birth weight	Ribeye area
Cycle VII	2940	1738
Cycle VII + new GPE	6752	2667

Marker	r sets	
HD	630,571	BovineHD SNP on BTA 1-29, MAF > 0.05
50K	39,366	HD subset on both BovineSNP50 versions

• Birth weight heritability

Data Set	Marker Set	h²
Cycle VII	HD	.64 (.03)
	50K	.63 (.03)
	none	.60 (.04)
VII + new	HD	.64 (.02)
	50K	.58 (.02)
	none	.60 (.03)

• Ribeye area heritability – ribeye area

Data Set	Marker Set	h²
Cycle VII	HD	.50 (.05)
	50K	.47 (.05)
	none	.54 (.07)
VII + new	HD	.50 (.04)
	50K	.47 (.04)
	none	.53 (.06)

• Trait

BTA

r = correlation between SNP effects different data or marker set

000

15

20

29

Reference GWAS Cycle VII - 50K

10

5

• Birth weight

• Birth weight

• Birth weight

• Birth weight

Ribeye area

Ribeye area

Ribeye area

Ribeye area

- Cycle VII trained predictions of new GPE
 - Cycle VII + new GPE pedigree
 - new GPE phenotypes
 - corresponding MBV or EBV
 - MBV = CycleVII SNP effects x newGPE genotypes
 - EBV = CycleVII pedigree estimates of newGPE

Cycle VII trained predictions of new GPE

 Birth weight – BW MBV genetic correlations

	r _{bw.mbv}	r ²
HD	.52 (.05)	.27
50K	.52 (.05)	.27
EBV (pedigree est)	.24 (.05)	.06

Cycle VII trained predictions of new GPE

 Ribeye area – REA MBV genetic correlations

	r _{rea.mbv}	r ²
HD	.27 (.12)	.07
50K	.30 (.12)	.09
EBV (pedigree est)	.11 (.08)	.01

Agreement between newGPE predictions

 Birth weight

	r gEBV.MBV	r gEBV.maMBV
HD	.57	.95
50K	.56	.94
EBV (pedigree est)	.31	.89
EBV (VII + newGPE)		.90

gEBV – from HD VII+newGPE MBV – VII effects x newGPE genotypes maMBV – 2-trait newGPE phenotypes, MBV

Agreement between newGPE predictions

 Ribeye area

	r _{gEBV.MBV}	r gEBV.maMBV
HD	.40	.97
50K	.41	.96
EBV (pedigree est)	.22	.94
EBV (VII + newGPE)		.95
gEBV – from HD VII+newGPE MBV – VII effects x newGPE genotypes maMBV – 2-trait newGPE phenotypes, MBV		

focus on important genes and regions

- polygenic selection for loci with subtle effects
 - eliminate noise from whole-genome SNP

Small HD sets evaluated in Cycle VII and new GPE n SNP Source

- GSA 4,795 HD subset in gene sets implicated by Cycle VII growth & carcass GWAS
- LDa 105 HD subset spaced around Cycle VII growth and carcass GWAS peaks

Heritability estimates

Data Set	Marker Set	Birth Weight	Ribeye area
Cycle VII	GSA	.25 (.03)	.20 (.03)
	LDa	.11 (.02)	.07 (.02)
	none	.60 (.04)	.54 (.07)
VII + new	GSA	.22 (.02)	.19 (.03)
	LDa	.09 (.02)	.05 (.01)
	none	.60 (.03)	.53 (.06)

Cycle VII trained predictions of new GPE

 Birth weight – BW MBV genetic correlations

	r _{BW.MBV}	r ²
GSA	.31 (.06)	.09
LDa	.38 (.05)	.14
EBV (pedigree est)	.24 (.05)	.06

Cycle VII trained predictions of new GPE

 Ribeye area – REA MBV genetic correlations

r _{REA.MBV}	r ²
.18 (.12)	.03
.19 (.11)	.04
.11 (.08)	.01
	r _{REA.MBV} .18 (.12) .19 (.11) .11 (.08)

Agreement between newGPE predictions

 Birth weight

	r _{gEBV.MBV}	r gEBV.maMBV
GSA	.30	.91
LDa	.36	.91
EBV (pedigree est)	.31	.89
EBV (VII + newGPE)		.90

gEBV – from HD VII+newGPE MBV – VII effects x newGPE genotypes maMBV – 2-trait newGPE phenotypes, MBV

Agreement between newGPE predictions

 Ribeye area

	r _{gEBV.MBV}	r gEBV.maMBV
GSA	.21	.94
LDa	.15	.94
EBV (pedigree est)	.22	.94
EBV (VII + newGPE)		.95
aEBV = from HD VII+newGPE		

MBV – VII effects x newGPE genotypes maMBV – 2-trait newGPE phenotypes, MBV

What's next?

- New developments that might increase portability of genomic predictions?
 - next-generation sequence, exon sequence, RNAseq
 - identify and classify (likely) functional variants
 - reference to impute from panel genotypes (LD,50K,HD) to sequence
 - gene pathways and networks
 - integrate functional annotation, gene expression and other information to identify interacting genes likely to affect phenotype

Summary

- HD genotyping panels offer opportunity for highresolution GWAS and QTL fine-mapping
- Existing 50K genotypes can be imputed to HD – need suitable HD reference genotypes
 - paternal and maternal haplotypes in reference
- Genomic selection similar using 50K or HD
 - limited portability
 - causal variants needed?
- Resources and methodology to better identify causal variants being developed
 - incremental advances or quantum leap?