Synchronization Response: *Bos taurus* vs. *Bos indicus* Cattle

2012
Beef Improvement Federation
Houston, Texas

Joel V. Yelich, PhD
Department of Animal Sciences
University of Florida, Gainesville

G. Allen Bridges, PhD
University of Minnesota
North Central Research and Outreach Center
Grand Rapids, MN

Bos taurus beef cattle

- Maternal and/or terminal breeds
- Positive carcass traits: marbling, tenderness, yield
- Excellent production in temperate climates

Bos indicus Based Cattle

“Positive Attributes”

- Heat tolerant
- Increased parasite & disease tolerance
- Improved production in subtropical climates

Bos indicus Based Cattle

“Negative Attributes”

- Older age at puberty
- Decreased carcass quality & tenderness
- Potential handling stress issues
 - Management driven

Reproductive challenges with *Bos indicus* cattle

- Differences in concentrations and/or sensitivities to GnRH, LH, estrogen, and progesterone
- Increased incidence of estrous cycles with three and four follicle waves
- Difficult to detect estrus, due to shorter estrous duration, decreased estrous intensity, and increased incidence of silent heats
- Postpartum period is extended
- More susceptible to (-) effects of handling stress

USDA Zone Map
Synchronization Systems
Producer Perspective

♦ Cost effective
♦ Ease of implementation
♦ Minimal cattle handlings
♦ Yield consistent & acceptable pregnancy rates
♦ Fit into producers’ operation
 • Meet their goals and objectives
 • Physical & labor resources

MANIPULATING THE ESTROUS CYCLE

Regulation of CL regression
Synchronization of follicular growth & inducing ovulation for timed-AI
Prevent expression of estrus and induce estrous cycles

Prostaglandin F_2α (PG)
GnRH
Progestogens (MGA) (CIDR)

Table 1. Commonly used hormones in estrous synchronization and their trade names.

<table>
<thead>
<tr>
<th>Hormone (Abbreviation)</th>
<th>Commercial Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gonadotropin Hormone Releasing Hormone (GnRH)</td>
<td>Cystorelin, Factrel, Fertagyl, OvaCyst</td>
</tr>
</tbody>
</table>
| Progestins | CIDR, Intravaginal progesterone-releasing insert
| Progesterone | Melengestrol acetate (MGA), Orally-active feed additive
| Synthetic progestin | Lutalyse, Estrumate, ProstaMate, estronPLAN™, In-Synch™ |

Table adapted from M.L. Day and D.E. Grum, The Ohio State University

Estrous Synchronization Terminology

♦ Estrous Response
 Percentage of females that exhibited estrus during synchronized period
♦ Conception Rate
 Percent of heifers that conceived to AI of those that exhibited estrus
♦ Timed-AI Pregnancy Rate
 Percentage of females that became pregnant following a timed-AI
♦ AI or Synchronized Pregnancy Rate
 Percentage of females that became pregnant to AI of total treated

Beef Heifer Synchronization

MGA + PG

Estrus (Low fertility)
Synchronized Estrus & AI

MGA (14 days)
PG

1 14 16 20 31 33 38
Treatment days

Brown et al., 1988
Yearling *Bos taurus* beef heifers synchronized with MGA + PG

<table>
<thead>
<tr>
<th>TRT</th>
<th>Estrous Rate (%)</th>
<th>Conception Rate (%)</th>
<th>AI Pregnancy Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown et al., 1988</td>
<td>157</td>
<td>83.0</td>
<td>69.0</td>
</tr>
</tbody>
</table>
| Patterson, 1990 | 323 | 83.0 | 74.0 | 61.0

MGA® - PG

For TAI, perform TAI 72 ± 2 h after PG with GnRH at TAI
For heat detection and AI, forgo TAI and detect heat and AI until day 39

Table 3. Reproductive performance of yearling *Bos taurus* (Lamb) and yearling heifers of *Bos indicus* (Bridges) breeding synchronized with MGA-PG

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Estrous response, n</th>
<th>Conception rate, %</th>
<th>Timed-AI pregnancy rate, %</th>
<th>Synchronized pregnancy rate, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamb et al., 2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 days</td>
<td>249</td>
<td>68.3</td>
<td>75.9</td>
<td>51.8</td>
</tr>
<tr>
<td>19 days</td>
<td>260</td>
<td>68.1</td>
<td>75.9</td>
<td>55.4</td>
</tr>
<tr>
<td>Bridges et al., 2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single PGF</td>
<td>354</td>
<td>43.2*</td>
<td>48.8</td>
<td>23.9*</td>
</tr>
<tr>
<td>Split PGF</td>
<td>341</td>
<td>50.1*</td>
<td>51.5</td>
<td>33.5*</td>
</tr>
</tbody>
</table>

*P < 0.05

Effectiveness of GnRH to induce ovulation for follicle synchronization

Day of the Estrous Cycle

Effect of GnRH on Follicular Waves

![Effect of GnRH on Follicular Waves](image_url)
Select Synch + CIDR® and TAI

Heat detect and AI day 7 to 10 and TAI all non-responders 72-84 hours after PG with GnRH at TAI

5-Day CO-Synch + CIDR®

Perform TAI 72 ± 2 h after the first PG with GnRH at TAI
Two injections of PG (8 ± 2 hrs) are required for this protocol

Select Synch + CIDR and TAI in 2 yr old Angus, Brahman, and respective crosses

<table>
<thead>
<tr>
<th>Variable</th>
<th>AN</th>
<th>1/4</th>
<th>3/8</th>
<th>1/2</th>
<th>3/4</th>
<th>BR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrous Response, %</td>
<td>55.6</td>
<td>27.6</td>
<td>38.9</td>
<td>55.6</td>
<td>40.0</td>
<td>66.7</td>
</tr>
<tr>
<td>(27)</td>
<td>(29)</td>
<td>(18)</td>
<td>(45)</td>
<td>(20)</td>
<td>(24)</td>
<td></td>
</tr>
<tr>
<td>Conception Rate, %</td>
<td>53.3</td>
<td>62.5</td>
<td>71.5</td>
<td>56.0</td>
<td>50.0</td>
<td>75.0</td>
</tr>
<tr>
<td>(15)</td>
<td>(8)</td>
<td>(7)</td>
<td>(25)</td>
<td>(8)</td>
<td>(16)</td>
<td></td>
</tr>
<tr>
<td>Timed-AI Pregnancy Rate, %</td>
<td>58.3</td>
<td>37.9</td>
<td>33.3</td>
<td>46.7</td>
<td>35.0</td>
<td>58.3</td>
</tr>
<tr>
<td>(12)</td>
<td>(29)</td>
<td>(18)</td>
<td>(45)</td>
<td>(20)</td>
<td>(24)</td>
<td></td>
</tr>
<tr>
<td>Synchronized Pregnancy Rate, %</td>
<td>55.6</td>
<td>37.9</td>
<td>33.3</td>
<td>46.7</td>
<td>35.0</td>
<td>58.3</td>
</tr>
<tr>
<td>(27)</td>
<td>(29)</td>
<td>(18)</td>
<td>(45)</td>
<td>(20)</td>
<td>(24)</td>
<td></td>
</tr>
</tbody>
</table>

* a,b,c,d (P < 0.05); J.V. Yelich, unpublished data

7-Day CO-Synch + CIDR®

Perform TAI 60 to 66 h after PG with GnRH at TAI

Table 4. Comparison of AI pregnancy rates between the 7-Day and 5-Day approaches to estrous synchronization in Bos taurus beef heifers.

<table>
<thead>
<tr>
<th>Reference</th>
<th>AI pregnancy rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7-Day preg rate</td>
</tr>
<tr>
<td>CO-Synch + CIDR</td>
<td>40.0% ± 66.7%</td>
</tr>
<tr>
<td>(n = 204)</td>
<td>(n = 201)</td>
</tr>
<tr>
<td>Select Synch +</td>
<td>47.3% ± 58.3%</td>
</tr>
<tr>
<td>Sparks et al,</td>
<td>(n = 298)</td>
</tr>
<tr>
<td>2010</td>
<td></td>
</tr>
</tbody>
</table>

7-Day Select Synch + CIDR® & TAI (7dSS)

5-Day Select Synch + CIDR® & TAI (5dSS)

Modified 7-Day Select Synch + CIDR® & TAI (Mod)
Working Hypothesis

- Reducing progesterone concentrations during development of the follicular wave would:
 - Progesterone causes an LH (Roberson et al., 1989; Dias et al., 2009)
 - Increase dominant follicle growth and diameter (Carvalho et al., 2008)
 - Increase pre-ovulatory estradiol production (Sirois and Fortune, 1990)
 - Enhance oocyte viability (Revah and Butler, 1996)
 - Enhance subsequent luteal function (Butler et al., 1996)
 - Increase estrous response and conception rates to AI and timed-AI

Table 5. Reproductive performance of yearling beef heifers of Bos taurus breeding

<table>
<thead>
<tr>
<th>TRT</th>
<th>Estrous Response, %</th>
<th>Conception Rate, %</th>
<th>Timed-AI Conception Rate, %</th>
<th>AI Pregnancy Rate, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>5dSS</td>
<td>367</td>
<td>56.1a</td>
<td>62.0c</td>
<td>50.9</td>
</tr>
<tr>
<td>7dSS</td>
<td>298</td>
<td>67.1b</td>
<td>50.0d</td>
<td>41.8</td>
</tr>
<tr>
<td>Mod</td>
<td>374</td>
<td>69.3c</td>
<td>65.6c</td>
<td>42.1</td>
</tr>
</tbody>
</table>

a,b p < 0.05

Sparks et al., 2010

Table 6. Reproductive performance of yearling beef heifers of Bos indicus breeding

<table>
<thead>
<tr>
<th>Treatments</th>
<th>N</th>
<th>Estrous Response, %</th>
<th>Conception Rate, %</th>
<th>Timed-AI pregnancy rate, %</th>
<th>AI pregnancy rate, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>5dSS</td>
<td>113</td>
<td>21.2</td>
<td>33.3</td>
<td>15.7</td>
<td>19.5</td>
</tr>
<tr>
<td>7dSS</td>
<td>113</td>
<td>34.5</td>
<td>38.5</td>
<td>14.9</td>
<td>23.0</td>
</tr>
<tr>
<td>Mod</td>
<td>117</td>
<td>42.7</td>
<td>62.0</td>
<td>19.4</td>
<td>37.6</td>
</tr>
</tbody>
</table>

P<0.05

Bischoff et al., 2011

Table 7. Reproductive tract score (RTS) effects on reproductive performance of yearling beef heifers of Bos indicus breeding

<table>
<thead>
<tr>
<th>RTS</th>
<th>N</th>
<th>Estrous Response, %</th>
<th>Conception Rate, %</th>
<th>Timed-AI pregnancy rate, %</th>
<th>Synchronized pregnancy rate, %</th>
<th>Thirty-day pregnancy rate, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>51</td>
<td>13.7</td>
<td>14.3</td>
<td>9.1</td>
<td>9.8</td>
<td>31.4</td>
</tr>
<tr>
<td>2</td>
<td>74</td>
<td>10.8</td>
<td>15.0</td>
<td>12.1</td>
<td>16.2</td>
<td>44.6</td>
</tr>
<tr>
<td>3</td>
<td>76</td>
<td>39.5</td>
<td>50.0</td>
<td>23.9</td>
<td>34.3</td>
<td>59.2</td>
</tr>
<tr>
<td>4</td>
<td>98</td>
<td>49.0</td>
<td>54.2</td>
<td>18.0</td>
<td>35.7</td>
<td>68.4</td>
</tr>
<tr>
<td>5</td>
<td>44</td>
<td>45.9</td>
<td>40.0</td>
<td>25.0</td>
<td>31.8</td>
<td>72.3</td>
</tr>
</tbody>
</table>

P-value P < 0.05 P > 0.05 P > 0.05 P < 0.05 P < 0.05

Bischoff et al., 2011

Bos taurus beef heifer Synchronization

- MGA + P6 and TAI
- 5 Day Co-Synch + CIDR
- 7 Day Select Synch + CIDR and TAI
- Response dependent on pubertal status

Bos indicus beef heifer synchronization

- Response dependent on pubertal status
- MGA + P6 (Split) and TAI
- 7 Day Select Synch + CIDR and TAI (Variable Results)
- 5 Day Co-Synch + CIDR (NO!!! NO!!!)
- Modified 7 Day Select Synch + CIDR and TAI
- Potential system but increased cattle handling
Beef Cow Synchronization

- Suckling calf
- Decreased percentage of estrous cycling cows at breeding
- Synchronization response
 - Dependent on nutritional status pre-calving

Anestrus in US beef cattle at start of synchronization

- Range 8-69%
- Range 17-67%
- Range 6-81%
- 2212 cows: 12 locations, 69 dpp
- 851 cows: 6 locations, 56 dpp
- 724 heifers: 5 locations, 14.7 months

Lucy et al., 2001; Larson et al., 2006

Effectiveness of the CIDR to induce estrus in lactating anestrous (non-cycling) cows

Lucy et al., 2001

Fig 3. Synchronization responses with 7 day CIDR in Bos taurus and Bos indicus type cows

<table>
<thead>
<tr>
<th></th>
<th>Select Synch</th>
<th>Select Synch + TAI</th>
<th>Co-Synch + CIDR</th>
<th>Co-Synch + CIDR + TAI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef taurus</td>
<td>58</td>
<td>49</td>
<td>54</td>
<td>33</td>
</tr>
<tr>
<td>n=498</td>
<td>n=322</td>
<td>n=539</td>
<td>n=891</td>
<td></td>
</tr>
</tbody>
</table>

(Larsen et al., 2006; Saldarriaga et al., 2004; Yelich, 2000; Esterman, 2011)

Table 4. Comparison of AI pregnancy rates between the 7-Day and 5-Day approaches to estrous synchronization in Bos taurus beef cows.

<table>
<thead>
<tr>
<th></th>
<th>Reference</th>
<th>7-Day</th>
<th>5-Day</th>
<th>P - value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD-Synch + CIDR</td>
<td>Bridges et al., 2008, Year 1</td>
<td>66.7%</td>
<td>80.0%</td>
<td>< 0.05</td>
</tr>
<tr>
<td>(n = 111)</td>
<td>(n = 105)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bridges et al., 2008, Year 2</td>
<td>56.2%</td>
<td>65.3%</td>
<td></td>
<td>< 0.05</td>
</tr>
<tr>
<td>(n = 201)</td>
<td>(n = 199)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Select Synch + CIDR and TAI in suckled
Bos indicus type cows

<table>
<thead>
<tr>
<th>Item</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrous response, %</td>
<td>47.6 (63)</td>
<td>45.2 (62)</td>
<td>52.9 (157)</td>
<td>48.5 (282)</td>
</tr>
<tr>
<td>Conception rate, %</td>
<td>68.8 (30)</td>
<td>60.7 (28)</td>
<td>77.1 (83)</td>
<td>68.8 (141)</td>
</tr>
<tr>
<td>Timed AI pregnancy rate, %</td>
<td>30.3 (33)</td>
<td>58.8 (34)</td>
<td>46.0 (74)</td>
<td>44.8 (141)</td>
</tr>
<tr>
<td>Synchronized pregnancy rate, %</td>
<td>50.8 (63)</td>
<td>59.7 (62)</td>
<td>62.4 (157)</td>
<td>57.6 (282)</td>
</tr>
</tbody>
</table>

Esterman et al., 2008: (Mean: BCS 5.0, DPF 75 days)

Select Synch + CIDR and TAI in Suckled Angus, Brahman, and respective crosses

<table>
<thead>
<tr>
<th>Item</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pregnancy rate, %</td>
<td>68.8 (30)</td>
</tr>
<tr>
<td>Conception rate, %</td>
<td>68.2 (44)</td>
</tr>
<tr>
<td>Timed-AI Pregnancy Rate, %</td>
<td>38.5 (26)</td>
</tr>
<tr>
<td>AI Pregnancy Rate, %</td>
<td>57.1 (70)</td>
</tr>
</tbody>
</table>

5-Day Select Synch + CIDR® & TAI (5dSS)

- Treatment day 0: GoBiH
- Treatment day 0: PG
- Treatment day 0: AI

Modified 7-Day Select Synch + CIDR® & TAI (Mod)

- Treatment day -5: GoBiH
- Treatment day 0: PG
- Treatment day 0: AI

Table 8. Reproductive performance of suckled Angus and Brangus cows

<table>
<thead>
<tr>
<th>Breed x Treatment</th>
<th>Estrous response, %</th>
<th>Conception rate, %</th>
<th>Timed-AI pregnancy rate, %</th>
<th>Synchronized pregnancy rate, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angus 5dSS</td>
<td>71.2</td>
<td>67.7</td>
<td>40.0</td>
<td>59.8</td>
</tr>
<tr>
<td>Mod</td>
<td>70.0</td>
<td>71.4</td>
<td>51.9</td>
<td>65.6</td>
</tr>
<tr>
<td>Brangus 5dSS</td>
<td>51.4</td>
<td>57.9</td>
<td>33.3</td>
<td>41.9</td>
</tr>
<tr>
<td>Mod</td>
<td>75.7</td>
<td>60.7</td>
<td>26.1</td>
<td>54.1</td>
</tr>
</tbody>
</table>

J. V. Yelich, unpublished data
Modified 5-Day Co-Syn + CIDR
"Bee Synch"
Gary Williams, TAMU

<table>
<thead>
<tr>
<th>CIDR Insertion & GnRH + PG</th>
<th>CIDR Removal & PG (2x)</th>
<th>GnRH & AI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>66 hr</td>
</tr>
</tbody>
</table>

- Suckled *Bos indicus* type cows: > 45 DPP; > 5.0 BCS
- AI Pregnancy Rates: 52-58%

Bos taurus Beef Cow Synchronization

- 5 Day Co-Synch + CIDR
- 7 Day Select Synch + CIDR and TAI
- Response dependent:
 - BCS, DPP, and cycling status

Bos indicus type Beef Cow Synchronization

- 7 Day Select Synch + CIDR and TAI
 - Variable response
 - Dependent on herd management
- 5 & 7 Day Co-Synch + CIDR: NO!!!! No!!!
- Potential Systems
 - Modified 7 Day Select-Synch + CIDR and TAI
 - Bee Synch
 - Disadvantage: increased cattle handling

Summary

- Synchronization systems in *Bos taurus* do not yield consistently similar results in *Bos indicus* type cattle
 - Reasons unclear: endocrine responses/follicle dynamics
- Recently designed systems for *Bos indicus* show promise
 - Disadvantage: additional cattle handling

Summary

- AI Synchronization success dependent on:
 - Cycling status in heifers/cows
 - BCS and DPP in cows
 - Maintaining system & procedure compliance
- Cost vs. Benefit