

Matt Spangler University of Nebraska-Lincoln

Estimates of US and Australia				
genetic testing costs (Angus)				
	US	AUSTRALIA		
AM	113,526	12,021		
NH	77,067	9,936		
CA	28,837	2,532		
TOTAL NUMBER	294,054	34,991		
COST (@ \$25/test)	7,351,350	874,775		

Numbers kindly shared by Bryce Schumann, American Angus Association; and Carel Teseling, Angus Australia (current as of 5/2011)

	Approaches
Molecu three v	Ilar information can be included in NCE in vays:
≈"Blend	ing"
🕫 This	is developing an index of MBV and EPD
Genon	nic relationship
og Mus	t have access to genotypes
R Correla	ated trait
😋 Con	text we are currently in and what AAA does

Adoption of Genomic Predictions

 ${\color{black}{\overline{\mbox{\scriptsize CAAA}}}}$ and ASA with others quickly following

Refficacy of this technology is not binary

- ^{CR} The adoption of this must be centered on the gain in EPD accuracy
 - cs This is related to the proportion of genetic variation explained by a MBV
 - It is equal to the squared genetic correlation

	Current Angus Panels				
Frait	Igenity (384SNP)	Pfizer (50KSNP)			
Calving Ease Direct	0.47	0.33			
Birth Weight	0.57	0.51 -			
Weaning Weight	0.45	0.52			
Yearling Weight	0.34	0.64			
Dry Matter Intake	0.45	0.65			
Yearling Height	0.38	0.63			
Yearling Scrotal	0.35	0.65			
Docility	0.29	0.60			
Milk	0.24	0.32			
Mature Weight	0.53	0.58			
Mature Height	0.56	0.56			
Carcass Weight	0.54	0.48			
Carcass Marbling	0.65	0.57			
Carcass Rib	0.58	0.60			
Carcass Fat	0.50	0.56			

MBV BIF Accuracy				
Genetic Correlation	% GV	BIF Accuracy		
0.1	1	0.005		
0.2	4	0.020		
0.3	9	0.046		
0.4	16	0.083		
0.5	25	0.132		
0.6	36	0.2		
0.7	49	0.286		

Example of Robustness Breed				
Breed	WW	YW		
AN	0.36 (0.07)	0.51 (0.07)		
AR	0.16 (0.16)	0.08 (0.18)		

