Delayed insemination of non-estrous cows improves pregnancy rates when using sex-sorted semen in timed artificial insemination of suckled beef cows

J.M. Thomas, S.L. Lock, S.E. Poock, and D.J. Patterson

University of Missouri

OPTIMIZING THE USE OF SEX-SORTED SEMEN IN FTAI Background

- Doses of sex-sorted semen have lower fertility than doses of non-sex-sorted semen from the same bull
 - Lower overall sperm cell number per dose (~2 million versus ~20 million)
 - Compromised sperm quality as a result of the flow-cytometric sorting process
- As a result, sex-sorted semen appears to have lower overall fertility and/or a shorter fertile lifespan in the female reproductive tract

•

OPTIMIZING THE USE OF SEX-SORTED SEMEN IN FTAI Background

- Although widely used in the dairy industry, sex-sorted semen has seen little adoption by beef producers
 - · Perceived cost compared to conventional semen
 - Higher cost per dose is compounded by lower fertility to create a higher cost per pregnancy
 - Opportunity cost of not having maximized first service pregnancies
 - Labor / time associated with heat detection
 - Use of sex-sorted semen in FTAI generally has been discouraged due to lower pregnancy rates
- In spite of the many potential applications for sex-sorted semen in the beef industry, the technology may not see widespread use without the development of a FTAI protocol that yields acceptably high pregnancy

OPTIMIZING THE USE OF SEX-SORTED SEMEN IN FTAI Background

- A previous joint research effort between the University of Missouri, Genex CRI, and the Ratcliff Ranch (Vinita, OK) evaluated the effect of extending the interval from PG to AI by 6 hr for heifers and 8 hr for cows when using sex-sorted semen
- This extended interval from PG to AI was not found to be advantageous for cows (n = 300)
- However, Estrotect patches had been used to record estrus expression prior to FTAI, and differences in pregnancy rates between estrous and nonestrous cows raised important questions

OPTIMIZING THE USE OF SEX-SORTED SEMEN IN FTAI Background

OPTIMIZING THE USE OF SEX-SORTED SEMEN IN FTAI Background

	Pregnancy rates o	nncy rates of cows after FTAI		
Estrus	Conventional	Sex-sorted @ 66 hr	Sex-sorted @ 74 hr	
Yes	69%	59%	48%	
No	62%	18%	14%	
Total	65%	36%	28%	

.

OPTIMIZING THE USE OF SEX-SORTED SEMEN IN FTAI Background

Pregnancy rates of cows after FTAI				
Estrus	Conventional	Sex-sorted @ 66 hr	Sex-sorted @ 74 hr	
Yes	69%	59%	48%	
No	62%	18%	14%	
Total	65%	36%	28%	

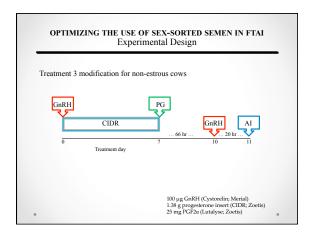
When using sex-sorted semen, FTAI pregnancy rates were reduced among cows that had not expressed estrus prior to FTAI

OPTIMIZING THE USE OF SEX-SORTED SEMEN IN FTAI Background

- In FTAI, there are fundamentally two groups of cows
 - Cows having expressed estrus prior to FTAI (e.g. 66 hr after PG)
 - Ovulate in response to an endogenous surge of LH
 - Ovulation occurs approximately 28-30 hr after the onset of estrus
 - Cows not having expressed estrus prior to FTAI
 - Induced to ovulate in response to GnRH administration
 - Ovulation occurs approximately 28-30 hr after GnRH
- When using sex-sorted semen, sperm cells do not retain full fertility for 28-30 hr

OPTIMIZING THE USE OF SEX-SORTED SEMEN IN FTAI Background

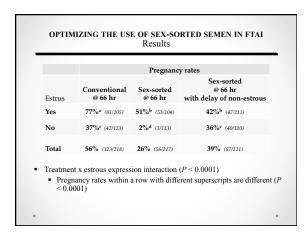
- One potential solution is to utilize sex-sorted semen only on cows that have expressed estrus prior to $\ensuremath{\mathsf{FTAI}}$
 - Cows not having expressed estrus could be inseminated with conventional semen
 - Cheaper cost per dose
 - Improved pregnancy rates to FTAI
- This approach would allow for an economical compromise by still achieving acceptable overall AI pregnancy rates
- However, this approach does not skew the calf gender ratio nearly as much as would be possible if sex-sorted semen could be utilized on non-estrous

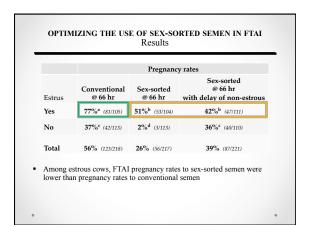

OPTIMIZING THE USE OF SEX-SORTED SEMEN IN FTAI Experimental Aim and Hypothesis

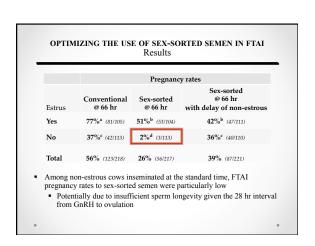
- Experimental aim: development of a strategy that would optimize the use of sex-sorted semen by better managing cows that do not express estrus prior to 66 hr
- Hypothesis: delayed insemination of non-estrous cows until 20 hr after GnRH would improve fertility by better aligning the window of sperm fertility with ovulation

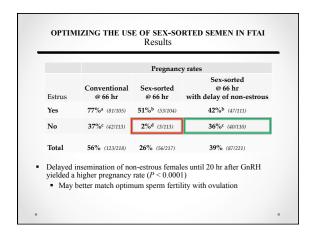
OPTIMIZING THE USE OF SEX-SORTED SEMEN IN FTAI Experimental Design

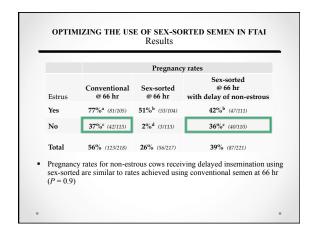
- 656 cows underwent estrous synchronization using a 7-Day CO-Synch + CIDR protocol
- Estrotect heat detection patches were applied at CIDR removal
- Cows were assigned to one of three treatments:
- Treatment 1: Conventional (non-sex-sorted) semen with GnRH and AI at 66 hr regardless of estrus expression
- Treatment 2: Sex-sorted semen with GnRH and AI at 66 hr regardless of estrus expression
- Treatment 3: Sex-sorted semen with GnRH at 66 hr but AI time split based on estrus expression
 - Cows with activated Estrotect patches received AI at GnRH (66 hr)
 Cows with non-activated Estrotect patches received AI 20 hr after GnRH
 GnRH

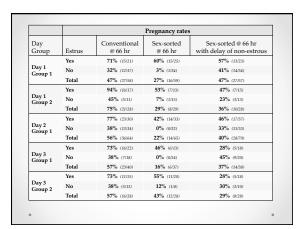

OPTIMIZING THE USE OF SEX-SORTED SEMEN IN FTAI Experimental Design Standard 7-Day CO-Synch + CIDR GnRH CIDR Treatment day 100 µg GnRH (Cystorelin; Merial) 1.38 g progesterone insert (CIDR; Zoetis) 25 mg PGF2a (Lutalyse; Zoetis)

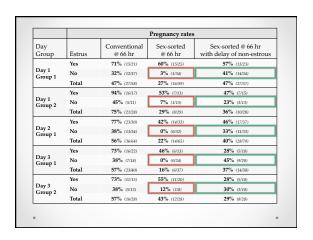



OPTIMIZING THE USE OF SEX-SORTED SEMEN IN FTAI Experimental Design and Statistical Analysis


- Treatments were equally represented across 5 groups/locations and 3 d of AI
- Balanced for cow age and body condition score
- · AI performed by a single technician
- · A single sire was used for both sex-sorted and conventional semen
- Statistical analyses
- PROC TTEST (Age, BCS)
- PROC GLIMMIX (Estrous response)
- PROC FREQ (Pregnancy Rate)


	Pregnancy rates				
Estrus	Conventional @ 66 hr	Sex-sorted @ 66 hr	Sex-sorted @ 66 hr with delay of non-estrous		
Yes	77% a (81/105)	51% ^b (53/104)	42% ^b (47/111)		
No	37%° (42/113)	2% ^d (3/113)	36% ° (40/110)		
Total	56% (123/218)	26% (56/217)	39% (87/221)		
Estrous Response	48% (105/218)	48% (104/217)	50% (111/221)		



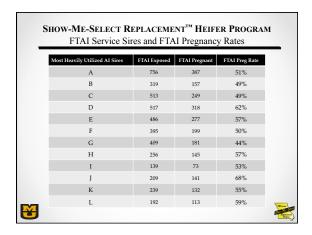


OPTIMIZING THE USE OF SEX-SORTED SEMEN IN FTAI Conclusion

- When using sex-sorted semen in standard FTAI, pregnancy rates are low for cows that have not expressed estrus prior to FTAI
 - Basis for previous recommendation that sex-sorted semen should not be used in conjunction with FTAI
- Delayed insemination of non-estrous cows until 20 hr after GnRH improves pregnancy rates when using sex-sorted semen
 - 34% increase (2% to 36%) in pregnancy rate of non-estrous cows
- Among non-estrous cows, pregnancy rates achieved using delayed insemination of sex-sorted semen were comparable to rates achieved using conventional semen at 66 hr

OPTIMIZING THE USE OF SEX-SORTED SEMEN IN FTAI Acknowledgments

- Stan Lock
- Ratcliff Ranch
- Rockway Inc. (Estrotect)
- Sexing Technologies Zoetis (formerly Pfizer Animal Health)
- Dr. George Seidel, Colorado State University
- University of Missouri Dr. David Patterson
 - Dr. Scott Poock, DVM
 - Dr. Michael Smith
 - Michael Schieffer Laura Mooney



Pregnancy rates after FTAI based on estrous expression Pregnancy rates Estrous expression Yes No Busch et al., 2008 123/164 (75%) 150/270 (56%) Nash et al., 2012 91/124 (73%) 99/220 (45%) Martin, 2012 103/150 (69%) 108/240 (45%) Total (n=1168) 317/438 (72%) 357/730 (49%)

Previous results using conventional semen Pregnancy rates after FTAI Estrus expression Difference Sire Yes (%) No (%) 74%38% 36% В 83% 59% 24% 72% C 49% 23% D 75% 63% 12% 52% 72% 20% 52% 51% 1% 85% 17% 68% G

This spring.....

- Extensive field trials with cows & heifers using splittime AI based on estrus.
 - o Heifers were synchronized using 14-day CIDR-PG
 - Cows were synchronized using 7-day CO-Synch +