Selection for novel traits: an international genomics perspective

(Experience from dairy)

Donagh Berry

Teagasc, Moorepark, Ireland.

BIF Conference, Nebraska, June 2014

cagasc

The Irish Agriculture and Food Development Authority

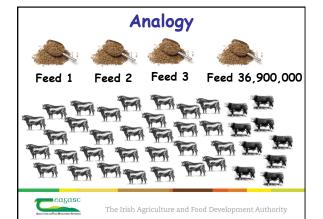
Molecular genetics 101

- · DNA is the building blocks of genes
- · Genes (+management) determine performance
- · Everyone's DNA is (subtlety) different
 - · Except twins
- · The DNA you're born is what you die with
- · DNA in your big toe is the same as your eye
 - · or in the follicles of your hair

The Irish Agriculture and Food Development Authority

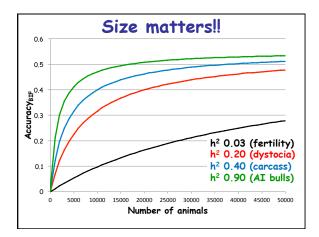
So....

- If we knew the effect of each piece of DNA on performance then....
- DNA from the hair sample of a calf could predict future performance!
- · Simple???
 - · Cattle have ~3 billion pieces of DNA
 - · Many million differ between individuals
 - · ...and they interact!!!


The Irish Agriculture and Food Development Authority

Problem

- Need HUGE datasets to quantify the "effect" of each DNA variant on performance
 - · Collaboration


The Irish Agriculture and Food Development Authority

Problem

- Need HUGE datasets to quantify the "effect" of each DNA variant on performance
 - · Collaboration
- · Costs a lot of money to generate genotypes
 - Collaboration
- · Costs even more money to generate field data (phenotypes) especially for novel traits
 - Collaboration
- · Algorithms, breeding schemes, chip design....
 - · Collaboration

Genomic selection in dairy

- · Launched in several countries in 2009
- · ~60% of semen sold is from genomic bulls
- Retrospective analysis across (almost all) countries shows that it works
 - Up to 30% more accurate that traditional evaluations
 - Seems to be over-estimation of proofs for genomically tested animals

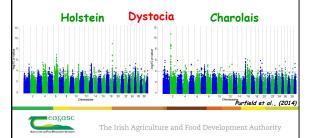
The Irish Agriculture and Food Development Authority

Why less uptake in beef?

- 1. Breed(s)
- 2. Effective population size
- 3. AI usage
- 4. Data recording
- 5. International genetic evaluations

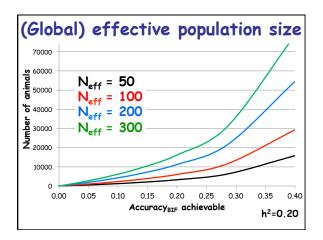
The Irish Agriculture and Food Development Authority

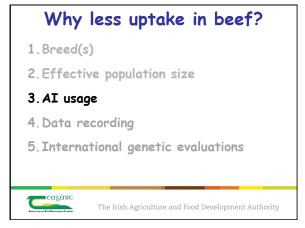
Why less uptake in beef?

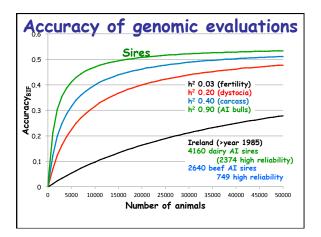

- 1. Breed(s)
- 2. Effective population size
- 3. AI usage
- 4. Data recording
- 5. International genetic evaluations

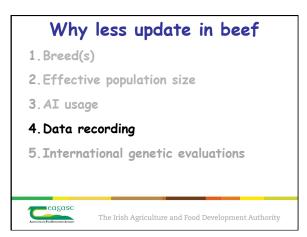
The Irish Agriculture and Food Development Authority

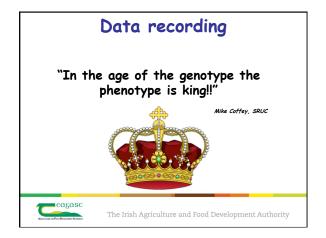
Breed(s)

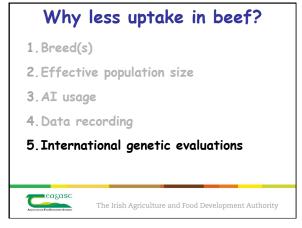

- Holstein-Friesian predominates temperate dairy populations
- · DNA effects can differ between breeds

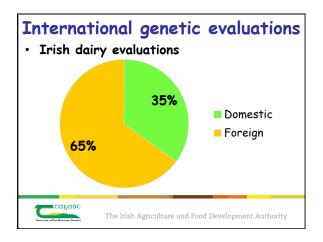



Why less update in beef

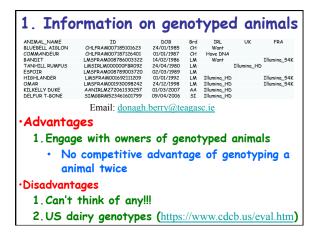

- 1. Breed(s)
- 2. Effective population size
- 3. AI usage
- 4. Data recording
- 5. International genetic evaluations

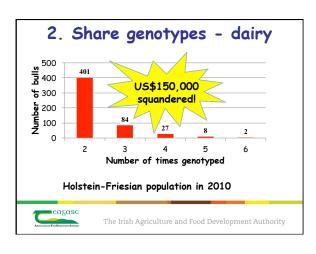


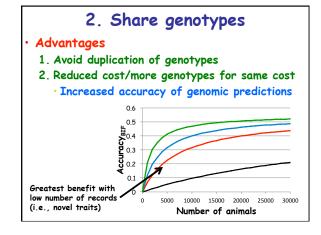


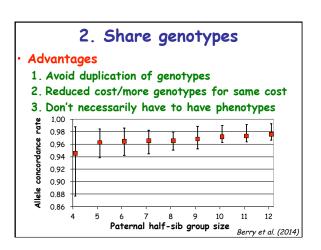


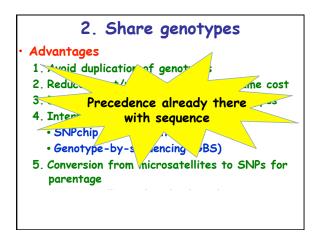


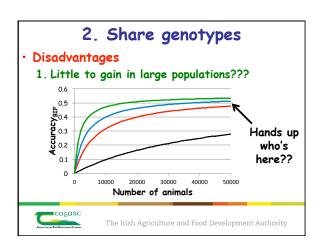


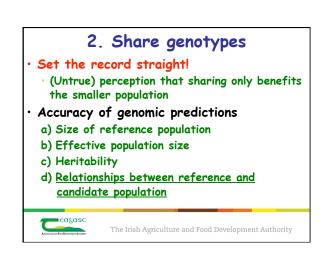


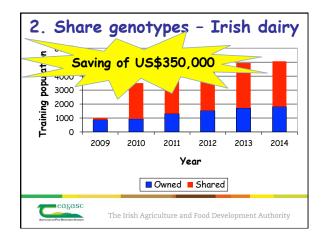


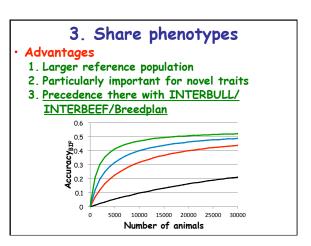












2. Share genotypes Disadvantages 1. Little to gain in large populations??? 2. Cost a lot of money Cost others the same money! Equal genotype contributions/monetary contribution 3. Should be related to the candidate population The Irish Agriculture and Food Development Authority

3. Share phenotypes

- Disadvantages
 - 1. Very costly to generate (novel) phenotypes
 - 2. Forgoing competitive advantage
 - Is there much competitive advantage with a Accuracy_{BIF} of 0.05??
 - Agreements could be based on equal contribution/monetary contribution
 - · Value dependent on current population size
 - · INTERBULL in dairy (no issue!)
 - · INTERBEEF/Breedplan in beef

The Irish Agriculture and Food Development Authority

4. Share genomic keys

· Genomic key is the SNP effects

SNP	Dystocia	Birth wt.	Yearling wt.	Carcass
1	+0.02	+0.02	+0.02	+0.53
2	-0.03	+0.19	-0.07	-0.09
3	+0.12	+0.02	+0.02	+0.02
4	+0.23	+0.13	+0.05	+0.07
5	-0.09	+0.19	-0.09	+0.19
6	+0.19	+0.03	+0.02	+0.02
7	+0.05	+0.02	+0.02	+0.00

eagasc

The Irish Agriculture and Food Development Authority

4. Share genomic keys

- Advantages
 - 1. Quantify robustness across different systems/populations
 - 2. Aid in refining (i.e., more supervised) genomic regions of importance
 - Different datasets breeds, systems
 - Different statistical approaches
 - · Should be validated in other population
- Disadvantages
 - 1. Cost money to generate
 - Key will soon be obsolete

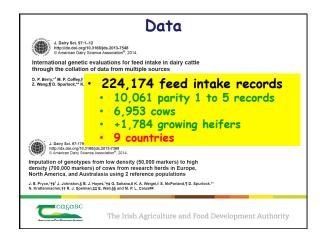
The Irish Agriculture and Food Development Authority

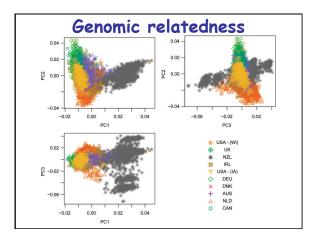
5. Pan global bull list

- Genetic connectedness is paramount to estimation of genetic correlations between environments
 - · Genotype-by-environment
 - Issue even in dairy
- Could identify a pan-global bull list per breed
 - · Not every population must use every bull
- · Can use algorithms developed in sheep

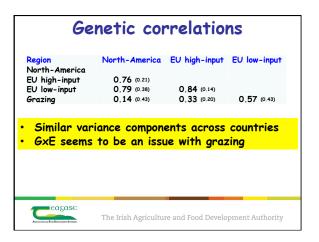
The Irish Agriculture and Food Development Authority

5. Pan global bull list


- Advantages
 - 1. Improved genetic connectedness
 - · Especially important for novel traits
 - Important if using multi-country genetic/ genomic evaluations
- Disadvantages
 - 1. Reaching a consensus on bull list



The Irish Agriculture and Food Development Authority


Case study dairy feed intake

Country	N	Mean (kg DM/d)	Heritability
Cows			
All	10,641	19.7	0.34 (0.03)
Canada	411	22.2	0.19 (0.14)
Denmark	668	22.1	0.52 (0.12)
Germany	1141	20.2	0.08 (0.06)
Iowa	398	23.5	0.41 (0.14)
Ireland	1677	16.7	0.41 (0.10)
NLD	2956	21.4	0.39 (0.05)
UK	2840	17.4	0.31 (0.06)
Wisconsin	447	24.9	0.24 (0.16)
Heifers			
Australia	843	8.3	0.20 (0.11)
New Zeal.	941	7.6	0.34 (0.12)

Conclusions

- (Almost) everyone can undertake genomic selection on their own
- But will it be any good??
- Collaboration is the best approach to achieve more rapid genetic gain
- Is there currently fear of an international "take-over"
 - Why should genomics change this?

