Using GPE and the acrossbreed EPD program to help parameterize multibreed evaluation

Wade Shafer and Larry Kuehn

The USDA is an equal opportunity employer.

Obstacles to full Multibreed

- Merger of multiple breed databases

 Structures are often very different
 - IDs duplicated in several breeds (but not known as duplicates)
 - Difficult to resolve
 - Standardized ID system would help
- Cooperation between database curators
 - Breed associations
 - Genetic prediction 'centers'
 - Individual producers/commercial entities

Multibreed obstacles

- · Estimating population parameters
 - Direct and maternal heterosis
 - Direct and maternal additive breed effects
 - Field data usually not suitable
 - Contemporary groups structure
 - Will discuss further
 - Confounding between heterosis and breed
 - Amount of crossbred data relative to purebred
 - (depends on classification of 'purebred')
- · Research data useful here

Contemporary groups

- In order to estimate breed differences from field data, we need contemporary groups that include purebreds of the same breed
 - Rarely occurs; often breeds are in different groups
 - Even when crossbreds and purebreds are in the same group, direct comparisons are not possible without adjusting for heterosis (requires good estimates of heterosis)

Estimation of heterosis

- In order to estimate heterosis from field data, we need groups with crossbreds and purebreds of both parental breeds
 - Rarely occurs; usually crossbreds are in a different groups
 - Even when crossbreds and purebreds are in the same group, typically purebreds of only one of the breeds are present

Estimating breed differences

- Problem can be improved with more sires in group still other considerations that are difficult to address
 - Reciprocal matings
 - Biased sampling of sires from other breeds
 - Heterosis still difficult to separate from breed
 - Were calves really treated the same?

Multibreed model

- Primarily descended from Arnold et al. (1992) animal model
 - Elzo et al., 1983, 1990 sire model
 - $y = Xb + ZQg + Za + WSd + WT\delta + e$

- Includes

- · Additive breed effects and heterosis
- Additive animal effects
- Animal x breed interaction (dominance)
 Likely difficult to fit in most data sets

Multibreed model

- Prior estimates of breed effects and heterosis essentially required
- Source of information most likely from research data
 - GPE program is designed to estimate breed differences from current industry samples

Proposal

- Use breed differences from GPE to parameterize multibreed model currently in use by American Simmental Association
 - Provide both breed effects and heterosis
 - Can basically pre-adjust data for breed composition
 - Need to consider where the programs are different and how to accommodate differences

Potential problems

- Currently, priors for ASA/IGS model are for breed by year effects
 - GPE analysis based on sampling from industry sires and adjusting solutions to the EPDs of the sampled bulls
 - In essence using breed genetic trends to adjust solutions from GPE data
 - Only Hereford and Angus bulls sampled throughout GPE
 - · Interpolation likely necessary

Potential problems

- · New trait development
 - Currently summarize whole GPE database for weight traits and carcass traits as part of the ABEPD process
 - Carcass weight added in 2015
 - Still missing CED, CEM, stayability and heifer pregnancy that are reported for several breeds
 - Multinomial distributions of these traits will require some form of scaling from GPE to multibreed

Potential problems

- Heterosis
 - While heterosis is reported as part of GPE, prior to current continuous sampling protocol, most estimates were based on Angus x Hereford crosses
 - One goal of current program is to estimate breed-specific heterosis
 - Important for multibreed
 - Still far from complete

Possible solutions

- · Breed x year solutions
 - Need to examine what we can do to fill in the years
 - Current ASA method places a high correlation among yearly estimates
 - Possibly can reference old solutions and newer solutions and interpolate
 - Adjust within years by within group EPD differences
 - Would exclude genetic trend (circular logic)

Possible solutions

- · New trait development
 - Have already prototyped CED with UNL collaboration
 - For ABEPD system, need to put all breeds on the same scale then transform to breed of interest
 - Scaled EPD by additive SD of EPD
 - Similar methodology could be applied to heifer pregnancy and stayability
 - Records may be limited on some breeds in GPE, but will grow over time

Possible solutions

- · Breed specific heterosis
 - UNL collaboration also developed to begin exploring breed and breed-type specific heterosis (Schiermiester et al., 2015)
 - Fitting main effect of heterosis (or breed-type) and random breed specific heterosis effects
 - Resolution not great yet, but evidence of breedtype specific heterosis for weight traits
 - Working on increasing crosses between 7 largest breeds and of those breeds with all others

Future plans

- Continue trait development and examination of breed effect model implications
 - Collaborations between UNL and USMARC likely because of previous interest and success
 - Important training in NCE for graduate student development

Future plans

- Ties in well with direction of ABEPD program and GPE reporting
 - Would like to develop web-based reporting and query system
 - Efficient updating of ABEPD and faster reporting of novel trait results
 - Current focus of an AFRI grant proposal for decision support tools (Spangler presentation)

Conclusion

- We think the GPE program and the multibreed model are a natural fit
- Will improve the base adjustment among current members of IGS
- Can help to transition to mating and selection decision support programs

Conclusion

- Please let us know if you are interested in any of these development opportunities
- We are looking for good collaborations to move this program ahead as quickly as possible
- · Will eventually transition to genomics

Acknowledgements

Bruce Golden Warren Snelling Mark Thallman Matt Spangler Lauren Hyde

