Water Intake in Beef Cattle

Megan Rolf State Beef Extension Specialist Oklahoma State University

Beef Cattle Water Intake

- Water is an essential nutrient needed for regulation of body temperature, growth, reproduction, digestion, metabolism, and many other biological processes (NRC)
- Cattle directly consume an estimated 760 Billion L per year (Beckett and Oltjen, 1993)
- Influenced by physiological parameters
 - Size/weight (i.e. Meyer et al. 2004)
 - Lactation status (i.e. Brody et al. 1954)

Lvstk. Production Science 90:117-121 Mo. Agric Expt. Stn. Bull. 556 J. Anim Sci 1993 71:818-826

Beef Cattle Water Intake

- Also influenced by environmental parameters
 - Ambient temperature and solar radiation (i.e. Arias and Mader 2011)

- Other environmental factors

Mo. Agric Expt. Stn. Bull. 556 J. Anim. Sci. 89:245-251

Water and dry matter intake

- Dry matter intake (i.e. Meyer et al. 2004, Holter and Urban 1992, Brew et al. 2011)
 - Not all studies show consistent, high relationships between these 2 traits
 - Ration type (high vs. low moisture)
 - Salt content
 - Restricting either feed or water intake restricts the other trait
 - Increases digestibility
 - Lowers passage rate

Livestock Science 140:297-300 J. Dalry Sci. 91(9):3385-3394 J. Dalry Sci. 75(6):1472-1475

Water for Consumption • Drinking water use in the beef industry – Not important on a LCA scale • ~95% Irrigation of pre-harvest water – Underscores importance of feed efficiency – Critical for an individual farmer

How much variation in intake?

- Sexson et al. 2012 estimated individual WI from 8,000 pen records over 4 years
 - Included environmental data in the model
 - Previous day temperature, daily temperature, change in temperature, wind speed, and THI were related to WI
 - $-R^2=0.32$
 - Significant variation not explained by the model

What bout beef cattle?

- Ittner et al. 1951 showed that Brahman cattle drank less than Hereford cattle at similar temperatures (88 F)
- Brew et al. 2011 estimated individual animal WI in growing cattle utilizing 146 growing calves with a GrowSafe system
 - Mean WI ~30 L/hd/day

Breed Composition	Gross WI, L/head/d	WI/kg metabolic BW, L/ head/d 0.58 ^a
Charolais X Angus		
Angus X Brangus	30.8 ^b	0.42 ^b
Brangus	30.8 ^b	0.32 ^{c,d}
Charolais X Brangus	29.7 ^b	0.38 ^{c,b}
Brangus X Romosinuano	24.1 ^c	0.28 ^d
Charolais X Romosinuano	20.7 ^d	0.32 ^{c,d}

Large-Scale Individual Animal WI

- Now have the tech to collect large numbers of WI phenotypes on individual animals
 - GrowSafe and Insentec systems
- Meyer et al. 2004 (60 dairy cows)
 - WI range from 14-171 kg/day, DMI 1.8-36.8 kg/day
- Meyer et al. 2006 (62 Holstein bulls)
 - WI up to 78.7 kg/day

OSU Project Overview

- 5 year integrated USDA project
 - Adaptability to abiotic stresses
 - Water availability and quality, temperature-related
 - Includes research and extension components
- · Goal: Develop beef cattle selection and management tools that address conservation of water resources and adaptation to climate variability (drought)

Insentec System

- 21 Day acclimation period
- Commence test protocol

Study Design

- 70 day baseline feed and water intake test
 - Individual animal (n=840, n=120 each round)
 - · Water intake
 - Feed intake
 - Periodic weights (ADG)
 - Behavioral data (temperament, posture, social interactions, shade use, motion index, etc.)
 - Health status (blood cell counts, treatment data for health interventions, electrolyte balance, hematocrit, etc.)
 - Heat and cold stress measures (respiration rates, subset with rumen boluses, behavioral data)

 - · Rumen and fecal samples
 - Pedometers on a subset of animals in each pen
 - Second testing phase for adaptation

More Still to Come!

- 6 more rounds of calves (Group 3 testing now)
- 80K genotyping data (GGP-HD)
- Water intake and efficiency
- Feed efficiency
- Adaptability to abiotic stresses
- Heritability estimates and GWAS for these traits
- Other traits with data collected
- Metagenomic sequencing
 - How is the rumen affected by water quality and availability?
 - >60% of protein requirement generated by microbes (Church 1993)
- GHG emissions predictions through modeling
- Tissue collections and (maybe) GHG emissions data on a

Tools for Producers

- · Cattle water demand tool
- · Expansion of the cattle comfort advisor

Project Team

Oklahoma State University

Megan Rolf

Michelle Calvo-Lorenzo

Sara Place Chris Richards

Clint Krehbiel Udaya DeSilva

University of Florida

Raluca Mateescu

Collaborators

DL Step-OSU Center for Veterinary Health Sciences

Al Sutherland-Oklahoma Mesonet

2014-67004-21624 from the USDA National Institute of Food and Agriculture.

Graduate Students

- Graduate Students
 - Kristi Allwardt
 - Alexandra Taylor
 - Cashley Ahlberg
 - Ashley Broocks
 - Justin Lyles
 - Emily Andreini
 - Cathy HavilandKimberly Branham
 - Jake Reed
- Former Grad Students
 - Justin Buchanan

