

DNA Pooling Rationale

- Running the Bovine HD array on 96 animals costs \$14,880. Running the Bovine HD array on a pool of 96 animals costs \$155. There is tremendous savings in genotyping costs but do you achieve the same goal. No.
- Pooling can be used to estimate GWAS effects (additive) but individual genotyping or bar coding is required for estimating EBV and making selection decisions.

Cost

- 112 pools of 96 animals (10,952 animals total) to achieve power of 80 % with pooling
- 9,120 animals to achieve power of 80 % with individual genotyping
- Cost of Bovine HD genotypes plus DNA extraction is \$38,860 for pooling and \$1,431,840 for individual genotyping.

2015 BIF Selection Decisions Breakout, Biloxi, Miss.

Pooling studies at USMARC

- Lung lesions in cattle and swine (Schuyler, Lexington, Crete)
- General Disease (BRDC, foot rot, pink eye)
- BVDV (in collaboration with Eduardo Casas)
- Bloat (New Zealand collaboration)
- · Pregnant vs not pregnant in cattle
- BRDC in industry feedlot cattle (NIFA grant)
- · Failure of passive transfer in piglets
- · Color stability and meat quality traits in swine.

Methods

- DNA samples pooled and sent to Neogen (GeneSeek) for genotyping with the Illumina Bovine HD Bead array (770K SNP).
- Statistical analysis
- PAF = X / (X + Y)
- PAF is distributed as multivariate normal with a mean of $X\beta$ and a variance of $A\sigma^2$.
- A is the genome-wide covariance among pools across SNP
- across SNP – σ^2 is an SNP specific scaling factor estimated using REML.

- Statistical Analysis
- Bonferroni correction to 5 % genome-wide
 Simple M, Effective number of tests was 343,000
 Nominal P-value was 1.49 × 10⁻⁷ (.05 / 343,000)
- False discovery rate of 5 %
- 5.47 × 10⁻⁶
- Results
 - Adjusting for population stratification
 - Also tested without stratification

Objective

• Identify SNP associated with severe lung lesions in fed beef cattle.

Methods

- 11,520 lungs were sampled from a central Nebraska beef processing plant with a throughput of 2,500 cattle per 8 h shift.
- On average 900 lungs were sampled per day.
- The majority of the lungs came from cattle raised without antibiotics.
- Case Control Definitions
 - Half (5,760) had severe lung lesions (Case)
 - Half (5,760) had mild or no lesions (Control).

Methods

- Lungs were scored as severe if they had greater than 50 % of lung tissue affected with lesions associated with BRDC including pleural adhesion to the thoracic cavity.
- Sampling variation in lung lesions
 – Lesion
 (L), Normal (N); green for sample and red for
 don't sample.
 - LLLLLLLLNNNNNNNNNLLLLLLLLLLLNNNNN
 - LLNLNNLLNLNNNLLLNNNLLLNNLLNNL
 - NNNNNNNNNNNNNNNNNNNNNNNNNNNN

2015 BIF Selection Decisions Breakout, Biloxi, Miss.

Larry Kuehn, U.S. Meat Animal Research Center

Methods

- Small cores of lung tissue were placed in 120 pools
 - 60 case (with lesions) pools
 - 60 control (without lesions) pools
- Each pool consisted of cores of 96 lungs collected within about a two hour period.
- DNA was extracted from each pool using a standard salt extraction procedure.

2015 BIF Selection Decisions Breakout, Biloxi, Miss.

Conclusion

- Function of genes near significant SNP
 - Tissue repair and regeneration
 - Tumor suppression
 - Control of organ size
- Immunity
- We reduced the cost of genotyping by exploiting sample pooling of extreme animals.
- Identified SNP that might be useful to reduce BRDC and reliance on antibiotics.

Conclusion

- Chain sampling method approximates contemporary group effects
- Doesn't directly result in an input for national cattle evaluation like whole genome selection approaches using individual genotyping

Conclusion

 May provide inputs to weighted WGS approaches as BRDC recording becomes more prominent

Future work - CSU collaboration

- Funded NIFA grant
- Working with a set of feedlots (Nebraska, Colorado, Kansas) to obtain treatment records
- Also collecting DNA samples at feedlots or at plants
- Trying to focus sampling on high BRDC incidence pens/groups

Feedlot BRDC grant

- Hoping to obtain 7,500 case samples (treated for BRDC) and matched controls from the same pens
- Planning to form approximately 50 case and 50 control pools and analyze with the Illumina BovineHD

Feedlot BRDC grant

- Remaining 2,500 cases and matched controls will be used for targeted sequencing effort
 - Focus on regions from array
 - May target whole exome depending on cost
 - Will serve as fine mapping and validation of array markers

BRDC pooling

- Hoping that lung and feedlot project will produce complimentary results
- We see this as an initial parameterization of whole genome selection models for BRDC susceptibility in national cattle evaluations

Acknowledgements

John Keele Shuna Jones Tara McDaneld Warren Snelling Tim Smith

Mark Enns Dan Sewald Malinda DaBell Tammy Sorensen Steve Simcox Ryan Boldt

Sam Nejezchleb

Rachel Pauling Dale Woerner

J R Tait

Participating feedlots and plants

Questions

 Mention of a trade name, proprietary product, or specific equipment does not constitute a guarantee or warranty by the USDA and does not imply approval to the exclusion of other products that may be suitable.