Decoupling Feed Intake and Gain Measures of Gain in Feed Efficiency Trials to Improve Selection

2015 Beef Improvement Federation Conference

Profit increase for producer

- •10% increase in gain increases profit by **18%** (Fox et al., 2001)
- ■10% increase in efficiency increases profit by **43%** (Fox et al., 2001)

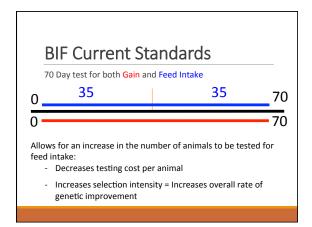
Selecting for FE

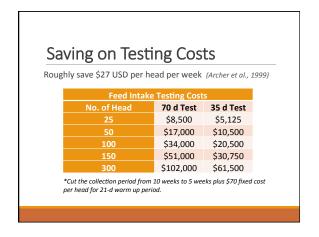
Derive FE with two Parameters:

- Gain Data → Average Daily Gain (ADG)
- Average Daily Feed Intake (ADFI) Data

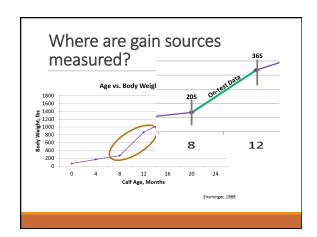
Possible to select for FE (Koch et. al., 1963)

 Parameters used to derive FE are moderately heritable


BIF Current Standards


70 Day test for both Gain and Feed Intake

Decreasing Test Lengths


- Studies support shortened a 35 d intake test (Archer et al., 1997: Wang et al., 2006)
- Loss in accuracy would occur but the increase in selection intensity should compensate for that loss (Archer et al., 1996)

Probable Gain Sources 1. On-test average daily gain: Multiple weights used to regress body weight on time then use predicted final and start weights to derive ADG 2. Postweaning gain: Gain as derived by national cattle evaluations where an weaning and yearling weights adjusted for calf age are used to predict gains

Two Parts: Intake & Gain

Can we use PWG in replace of or in complement to on-test ADG?

How does using either of these two gain parameters in an index with intake differ the response to selection of feed efficiency?

Select for FE

- •Find another way to select for feed efficiency: shortened 35 d ADFI test and another gain source
- •Combining parameters in a properly weighted index: 35 d intake + gain data
- •Increase genetic change in FE per year

Can we use PWG in replace of or in complement to on-test ADG?

-Quantifying the relationship between PWG and on-test ADG

Materials & Methods

Data collection: 2003 -2012 (USMARC)

5,606 total observations

- Dry matter intake, test weights, adjusted weaning weights,
- adjusted yearling weights
 3,212 Steers and 2,394 Heifers

Six Trait Animal Model

- 2 different gain records
- Intake records
- Separate for males and females

Parameter Notation

PWG: Postweaning gain as derived by NCE PWG = (Adj. Yearling Weight – Adj. Weaning Weight)/ 160 days

ADG: On-test average daily gain

ADG = (Predicted final weight – Predicted initial weight)/

ADFI: Average daily feed intake

ADFI: Total DMI/ (End date on test – start date on test)

Results & Findings

Descriptive Statistics

Trait	Number	Mean	Standard
		(kg)	Deviation
Steer ADFI	3,212	4.30	0.67
Steer ADG	3,212	0.90	0.26
Steer PWG	3,211	1.39	0.19
Heifer ADFI	2,394	3.52	0.58
Heifer ADG	2,394	0.46	0.22
Heifer PWG	2,392	0.88	0.21

Heritability Estimates & Genetic Correlations

Trait 🍍	SADEI	SADG	SPWG	HADFI	HADG	HPWG
Steer ADFI	0.43	0.46	0.70			
	(0.05)	(0.03)	(0.03)			
Steer ADG	0.73	0.09	0.35			
	(0.12)	(0.03)	(0.03)			
Steer PWG	0.58	0.81	0.36			
	(0.06)	(0.14)	(0.05)	_		
Heifer ADFI	0.71	0.66	0.65	0.39	0.32	0.49
	(0.09)	(0.20)	(0.09)	(0.05)	(0.04)	(0.04)
Heifer ADG	0.51	0.39	0.71	0.64	0.14	0.37
	(0.15)	(0.27)	(0.15)	(0.12)	(0.04)	(0.04)
Heifer PWG	0.47	0.67	0.91	0.77	0.65	0.42
	(0.09)	(0.20)	(0.08)	(0.05)	(0.12)	(0.05)

Steer Breed Differences Relative to Angus

	Breed Differences Among Steers								
Breed	ADFI	ADG	PWG	Breed	ADFI	ADG	PWG		
AN	0	0	0	BV	-1.46	-0.16	-0.45		
нн	-0.80	-0.05	-0.12	СН	-0.53	0.07	-0.10		
AR	-0.29	-0.16	-0.11	CA	-1.23	-0.11	-0.35		
SH	-0.97	-0.12	-0.25	GV	-1.03	-0.16	-0.31		
DS	-1.88	-0.39	-0.77	LM	-1.25	-0.01	-0.32		
вм	-0.77	0.09	-0.31	MA	-1.64	-0.17	-0.44		
BR	-1.31	-0.27	-0.72	SA	-1.18	-0.13	-0.41		
BN	-0.18	0.02	-0.30	SM	-0.04	0.04	0.35		
SG	-0.57	0.15	-0.20	TA	-1.21	-0.30	-0.36		

Heifer Breed Differences Relative to Angus

	Breed Differences Among Heifers								
Breed	ADFI	ADG	PWG	Breed	ADFI	ADG	PWG		
AN	0	0	0	BV	-1.84	-0.32	-0.61		
нн	-0.96	-0.07	-0.12	СН	-0.89	-0.09	-0.19		
AR	-0.67	-0.04	-0.15	CA	-1.05	-0.17	-0.27		
SH	-1.01	-0.12	-0.24	GV	-0.72	-0.06	-0.24		
DS	-1.56	0.11	-0.02	LM	-1.47	-0.15	-0.35		
вм	-1.55	-0.15	-0.31	MA	-1.10	-0.10	-0.22		
BR	-1.35	-0.19	-0.51	SA	-1.17	-0.19	-0.33		
BN	-0.57	-0.18	-0.30	SM	-0.52	-0.04	-0.15		
SG	-1.03	-0.07	-0.28	TA	-1.94	-0.39	-0.58		

How does using these two gain parameters in an index with intake differ the response to selection of feed efficiency?

Materials & Methods

Materials & Methods

On-test ADFI & ADG = **91 d test**On-test ADFI & PWG = **56 d test** (Shortened 35 d intake test + 21 d warm-up)

Indices combined EBVs (Lin, 1980):

- I_{ADG, ADFI} = ADGebv + (v)ADFlebv
- I_{PWG, ADFI} = PWGebv + (v)ADFIebv

Efficiencies of the alternative indices:

- Heritability of efficiency
- Number of animals tested: (100 animals/91 d test)
- Relative costs per year
- Genetic change per generation

Results & Findings

Index Correlations

Variable	Mean	Maximum	Minimum	Pearson	Spearman
Heifer I _{ADG, ADFI}	0.0004	0.183	-0.131	0.45	0.43
$Heifer\ I_{PWG,\ ADFI}$	0.0002	0.307	-0.345	$P \leq 0.001$	P < 0.001
Steer $I_{ADG, ADFI}$	-0.0026	0.484	-0.363	0.96	0.96
Steer I _{PWG, ADFI}	-0.0050	1.060	-0.855	P < 0.00)	P < 0.001

More **positive** value = more desirable efficiency, **more** efficient animal

More **negative** value = less desirable efficiency, **less** efficient animal

Steer Unrestricted Index

	91 d Test ^a	56 d Test ^b
Heritability of gain trait	0.09	0.36
Genetic correlation (Gain, Feed Intake)	0.73	0.58
Relative number tested/year	1.00	1.62
Heritability of efficiency	0.15	0.48
Relative cost/tested animal	100%	62%
Selection Intensity (N = 5)	5% i = 2.06	3% i = 2.27
Genetic Change in index per generation	9%	33%

Steer Restricted index

	91 d Test ^a	56 d Test ^b
Heritability of gain trait	0.09	0.36
Genetic correlation (Gain, Feed Intake)	0.73	0.58
Relative number tested/year	1.00	1.62
Heritability of efficiency	0.03	0.27
Relative cost/tested animal	100%	62%
Selection Intensity (N = 5)	5% i = 2.06	3% i = 2.27
Genetic Change in index per generation	5%	25%

Heifer Unrestricted Index

	91 d Test ^a	56 d Test ^b
Heritability of gain trait	0.14	0.42
Genetic correlation (Gain, Feed Intake)	0.64	0.77
Relative number tested/year	1.00	1.62
Heritability of efficiency	0.10	0.27
Relative cost/tested animal	100%	62%
Selection Intensity (N = 5)	5% i = 2.06	3% i = 2.27
Genetic Change in index per generation	6%	15%

Heifer Restricted Index

	91 d Test ^a	56 d Test ^b
Heritability of gain trait	0.14	0.42
Genetic correlation (Gain, Feed Intake)	0.64	0.77
Relative number tested/year	1.00	1.62
Heritability of efficiency	0.06	0.12
Relative cost/tested animal	100%	62%
Selection Intensity (N = 5)	5% i = 2.06	3% i = 2.27
Genetic Change in index per generation	6%	15%

Breed Differences Steer Efficiency – Unrestricted Index

	ADG, ADFI	PWG, ADFI		ADG, ADFI	PWG, ADFI
Angus	0	0	Braunvieh	0.02	0.14
Hereford	0.13	0.11	Charolais	0.06	0.18
Red Angus	-0.02	-0.11	Chiangus	0.03	0.14
Shorthorn	0.06	0.08	Gelbvieh	0.02	0.05
South Devon	-0.18	-0.01	Limousin	0.07	0.24
Beefmaster	-0.07	0.24	Maine-Anjou	0.08	0.16
Brahman	-0.30	0.00	Saler	-0.04	0.11
Brangus	-0.24	0.05	Simmental	0.05	0.05
Santa Gertrudis	-0.02	0.27	Tarentaise	0.02	-0.05

Breed Differences Heifer Efficiency – Unrestricted Index

	Across breed comparisons of efficiency for steers								
	ADG, ADFI	PWG, ADFI		ADG, ADFI	PWG, ADFI				
Angus	0	0	Braunvieh	-0.08	-0.15				
Hereford	0.06	0.12	Charolais	0.03	0.03				
Red Angus	0.04	0.02	Chiangus	-0.04	-0.01				
Shorthorn	0.01	0.01	Gelbvieh	0.03	-0.06				
South Devon	0.31	0.37	Limousin	0.04	0.01				
Beefmaster	0.04	0.07	Maine-Anjou	0.04	0.05				
Brahman	-0.02	-0.17	Saler	-0.04	-0.04				
Brangus	-0.11	-0.15	Simmental	0.03	-0.02				
Santa Gertrudis	0.06	-0.02	Tarentaise	-0.14	-0.10				

Conclusions

- •Moderate heritability estimates of PWG and ADFI suggests improvement in feed efficiency through selection is possible
- Strong correlations between on-test ADG and PWG suggests PWG is a good proxy for on-test ADG
- Significant breed effects for ADG, ADFI, and PWG in this population

Implications

- Literature estimates a 35 d intake test is long enough to test ADFI without severe loss in accuracy
- Propose combining a 35 d intake test & postweaning gain as calculated by NCE is suffice to test for feed efficiency
- \blacksquare Using this would cut the current testing standard in ½ allowing for more animals to be tested per year per facility
- *Using an unrestricted linear index allows for maximum genetic progress of feed efficiency

Future Research

Future Research

- 1. Are these conclusions applicable in another population?
- 2. Would regressing the testing days back to a standard test interval change the results?
- 3. What stage in the growing phase is most applicable to test for feed
- 4. Could adding in test weights collected throughout the 35 day intake test increase the amount of explained variation?

Thank you. Questions?