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Introduction 

Genomic selection in beef cattle has currently been performed with multistep methods, 

which uses deregressed EBV to estimate SNP effects and then direct genomic value (DGV) for 

selection candidates based on their genotypes (Meuwissen et al., 2001; Garrick et al., 2009). The 

main advantage of this approach is that the traditional BLUP evaluation is kept unchanged and 

genomic selection can be carried out by a separate entity owning genotypes but not phenotypes. 

Also new animals are easily evaluated if DGV is computed as a sum of marker effects, but not if 

selection indexes including DGV and parent average (PA) are used. 

When both phenotypes and genotypes are available jointly, single-step genomic BLUP 

(ssGBLUP) (Aguilar et al., 2010) is a simple alternative. This method does not rely on 

deregressed proofs, properly weighs information from genotyped sires and cows, thus avoiding 

double-counting of contributions due to relationships and records, and accounts for pre-selection 

bias of genomically selected parents without phenotypes (Legarra et al., 2014). In ssGBLUP it is 

also possible to quickly evaluate young genotyped animals without running a complete 

evaluation that requires several hours to converge. Quick predictions can be calculated indirectly, 

where genomic predictions for young animals are obtained from SNP effects.  It was shown by 

Wang et al. (2012)  that SNP effects can be derived from GEBV solutions from the main 

ssGBLUP evaluation. 

78



In its current implementation, ssGBLUP uses direct inversion of genomic matrices 

(Aguilar et al., 2011), which has a cubic cost and a limit of 150,000 animals (Aguilar et al., 

2013). Several methods were proposed to overcome that limit (Legarra and Ducrocq, 2012; 

Fernando et al., 2014; Liu et al., 2014), but none was successful.  Recently Misztal et al. (2014) 

presented a method which uses an approximate inversion of genomic relationships based on 

recursions on a fraction of the total population; which can be suitable and inexpensive.  

The goal of this paper is to discuss the feasibility of ssGBLUP for genomic evaluation in 

Angus cattle with reference populations of different composition. Additional goals were to 

evaluate the ability to predictive GEBV with genomic recursions and with indirect prediction for 

young animals.  

Single-step genomic BLUP (ssGBLUP)  

The difference between BLUP and ssGBLUP can be observed in the mixed model 

equations, where the inverse of pedigree-based relationship matrix (A) is replaced by the inverse 

of the realized relationship matrix (H). The H matrix blends A with the genomic relationship 

matrix constructed based on SNP genotypes (G) and a pedigree-based relationship matrix for 

genotyped animals only (A22): 

H-1=A-1+ �
0 0
0 G -1– A22

-1 � 

   Contrary to genomic BLUP (GBLUP), ssGBLUP accounts not only for genotyped 

animals, but also for ungenotyped ones. In H matrix, genomic relationships can influence 

nongenotyped animals if they are related to genotyped animals in A. Even if two animals are 

unrelated in A, they will be related in H if they have genotyped descendants that are related in G. 

This is possible because G is usually identical by state, which means the genomic relationships 

are based on allele sharing independently of the origin. 
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Composition of genomic EBV (GEBV) from ssGBLUP 

From traditional BLUP evaluations, EBV for an animal i can be expressed as (VanRaden 

and Wiggans, 1991): 

𝑢𝑢𝑖𝑖 = 𝑤𝑤1𝑃𝑃𝑃𝑃 + 𝑤𝑤2𝑌𝑌𝑌𝑌 + 𝑤𝑤3𝑃𝑃𝑃𝑃 

where PA is Parent Average, YD is Yield Deviation (phenotypes adjusted for the model effects’ 

solutions other than additive genetic and error), PC is Progeny Contribution. When both parents 

are known, phenotype is available, and each progeny has a known mate, the weights w1 to w3 

sum to 1. The decomposition of EBV can be derived from analyzing a row of mixed model 

equations for a given animal. In particular, YD is due to own phenotypic information, PA is the 

average of parental EBV for animal i, and PC is the sum of the differences between any progeny 

EBV of animal i minus one half the EBV of its dam (or the mate of animal i). 

On the other hand, EBV for an animal i when genomic information is available (GEBV) 

is (VanRaden and Wright, 2013): 

𝑢𝑢𝑖𝑖 = 𝑤𝑤1𝑃𝑃𝑃𝑃 + 𝑤𝑤2𝑌𝑌𝑌𝑌 + 𝑤𝑤3𝑃𝑃𝑃𝑃 + 𝑤𝑤4𝐺𝐺𝐺𝐺 

where GI contains information from animal’s genotype and all weights sum to 1. According to 

VanRaden and Wright (VanRaden and Wright, 2013), the weight for GI is: 

𝑤𝑤4 = 𝑔𝑔𝑖𝑖𝑖𝑖−𝑎𝑎22𝑖𝑖𝑖𝑖

𝑑𝑑𝑑𝑑𝑑𝑑
, with  𝑑𝑑𝑑𝑑𝑑𝑑 = 2 + 𝑑𝑑𝑟𝑟/𝛼𝛼 + 𝑑𝑑𝑝𝑝/2 + 𝑔𝑔𝑖𝑖𝑖𝑖 − 𝑎𝑎22𝑖𝑖𝑖𝑖  

Aguilar et al. (Aguilar et al., 2010) showed that in ssGBLUP, GI corresponds to two 

components: 

𝐺𝐺𝐺𝐺 = 𝑤𝑤41𝑌𝑌𝐺𝐺𝐷𝐷 − 𝑤𝑤42𝑃𝑃𝑃𝑃 

with values for DGV and PP equal to: 

DGVi=
−∑ 𝑔𝑔𝑖𝑖𝑖𝑖j,j≠i uj

𝑔𝑔𝑖𝑖𝑖𝑖
; PPi=

−∑ 𝑎𝑎22
𝑖𝑖𝑖𝑖

j,j≠i uj

𝑎𝑎22𝑖𝑖𝑖𝑖
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where DGV is the portion of prediction due to the genomic information, which comes from G, 

and PP is pedigree prediction that comes from A22. The weights 𝑤𝑤1,𝑤𝑤2,𝑤𝑤3,𝑤𝑤41 , and 𝑤𝑤42sum to 1.  

In general, PP accounts for part of PA explained by DGV; when A=A22, PA and PP 

cancel out and DGV explains a larger fraction of GEBV; when a genotyped animal is unrelated 

to the genotyped population, PP=0 and DGV explains a smaller fraction of GEBV; when two 

parents are genotyped, PP will include a large fraction of PA. Subsequently, accuracy of DGV 

will vary on an animal basis depending on how many ancestors of that animal are genotyped, as 

found by Mulder et al. (Mulder et al., 2012). When a genotyped animal has many progeny, w3≈1 

and its GEBV is mainly driven by PC; however, genotyping those animals is useful as they are 

usually part of the reference population. When an animal is not genotyped, w4=0 and predictions 

can be improved due to improved PA and PC if its relatives are genotyped. When an animal is 

not genotyped and has no phenotypes and no progeny, the genetic prediction is driven by PA and 

in most cases improvements in predictions are small (Legarra et al., 2009; Aguilar et al., 2010; 

Christensen and Lund, 2010). 

Dataset 

Datasets from American Angus Association (AAA) were available that included growth 

traits and calving ease (CE). Growth traits included birth weight (BW), weaning weight (WW), 

and post-weaning gain (PWG). Table 1 shows general statistics for all traits. The animals were 

genotyped for 54,609 SNP from the BovineSNP50k v2 BeadChip (Illumina Inc., San Diego, 

CA). Currently, no genotyping strategy is applied by AAA; therefore, the members can choose 

which animals are being genotyped. 
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Table1. Heritability (h2) and general statistics for growth traits and CE 

Trait1 h2 Number of 
records Average (kg) SD (kg) Number of genotyped 

animals with records 
BW 0.41 6,189,661 36.47 4.45 50,784 
WW 0.20 6,890,625 263.13 44.63 51,830 
PWG 0.20 3,387,252 162.25 67.00 36,196 
CE 0.12 1,310,684  -  - 10,558 

easy  - 1,215,571  -  - 10,228 
difficult  - 95,113  -  - 330 

1 BW = birth weight; WW = weaning weight; PWG = post-weaning gain; CE = calving ease. 

ssGBLUP with different reference populations 

The current trend in livestock genomics is to genotype young animals; however, more 

important animals in the reference population may give more information to the evaluations. For 

growth traits (CE), the first reference population tested was composed of 1,628 (1,541) top bulls 

with EBV accuracy (based on prediction error variance - PEV) for BW ≥ 0.85; which we will 

refer hereinafter as “ref_bulls”. In this case, the G matrix was composed of animals in the 

reference population and also animals in the validation population; the last had 18,721 animals 

for growth traits and 13,166 for CE. The second reference population was composed of the top 

bulls and also top cows that had an EBV accuracy for BW ≥ 0.85; which we will refer as ref_2k. 

The number of top cows was small and only 268 were added for the growth trait analysis and 

323 for CE. The third reference population was composed of top bulls, top cows, and all other 

genotyped animals born from 1977 to 2012 (we will refer as ref_33k). This group had a total of 

33,162 animals for growth and 27,380 for CE, with an average EBV accuracy for BW of 0.77 (± 

0.05). For the latter analysis, the G matrix was composed of the maximum number of 51,883 

genotyped animals for growth analysis and 40,546 for analysis of CE.  

Method for Validation 
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The ability to predict future phenotypes was the validation method chosen. This method is 

based on Legarra et al. (2008), and predictive ability for traditional and genomic evaluations for 

animals born in 2013 was calculated as the correlation between (G)EBV and phenotypes 

corrected for fixed effects (y-Xb): 

r = cor[(G)EBV,y–Xb] 

The predictive ability or predictivity is used as an approach to compare the methods 

applied in this paper. For all analyses, the validation groups were kept the same to make 

comparisons easier. Validations involved 18,721 animals for growth traits and 16,133 animals 

for CE. 

Results 

  Predictive ability on young animal when using several reference populations is shown in 

Figure 1.  Using only top bulls as a reference population (ref_bulls) increased predictivity 

relative to BLUP by 0.05 for BW, 0.01 for WW, 0.04 for PWG, and 0.01 for CE. Addition of top 

cows to the reference population (ref_2k) did not increase the predictivity for any trait. This 

could be due to the small number of animals added and also because daughters of those cows 

already contributed through the inclusion of bulls. Addition of around 31,000 animals to the 

reference population provided an additional increase in predictivity of 0.05 for BW, of 0.03 for 

WW and of 0.02 for PWG. However, no additional increase was observed for CE by adding 

extra 27,000 genotyped animals, of which about 7,000 had phenotypes for that trait.  

The addition of 31,000 animals with few or no progeny led to the same increase of 

predictivity as using only the top bulls for BW, led to an increase of 3 times for WW and an 

increase of 0.5 times for PWG. Among the 31,000 extra animals, almost all had phenotypes for 

BW and WW, but only 24,000 had phenotypes for PWG. Evidently, the composition of reference 
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population is also a factor that influences predictivity of GEBV besides the reference population 

size. Thus, genotyping strategy should take into account genotyping more important and maybe 

older animals with more information (higher EBV accuracy) along with genotyping large 

amounts of young animals. 

 

Figure 1. Predictive ability of future phenotypes for young genotyped animals born in 2013.  
BW = birth weight; WW = weaning weight; PWG = post-weaning gain; CE = calving ease. 
Predictive ability was calculated as correlation between corrected phenotypes and genomic 
EBV; ref_bulls is a reference populations that contains top bulls, ref_2k contains top bulls and 
top cows, and ref_33k contains all genotyped animals born up to 2012. 

 

ssGBLUP with indirect predictions for young animals 

 With the increasing number of genotyped heifers and steers in beef cattle populations, 

the genomic methods should be able to provide predictions for young animals without 

phenotypes in a quick run, externally to the official evaluations. This concept is introduced here 

as indirect ssGBLUP, and basically mimics the mixed model equations. It would be 

advantageous from different perspectives: to evaluate young animals mainly for traits that are 

measured later in life, after the selection decisions are made; and to reduce computing costs 
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because the dimension of G would not increase in the same proportion as the number of 

genotyped animals.  

For ssGBLUP with indirect predictions, SNP effects can be calculated using the current 

run of ssGBLUP with all but young animals, and genomic predictions for young animals are 

obtained by multiplying the SNP content by SNP effect to obtain DGV; a more complete GEBV 

can also be available through a selection index that combines DGV and PA. In order to explain 

how it works, consider the equation for the GEBV of a single individual in ssGBLUP as a 

combination of equations in Aguilar et al. (2010) and VanRaden and Wright (2013):  

GEBV = 𝑤𝑤1PA + 𝑤𝑤2YD + 𝑤𝑤3PC + 𝑤𝑤41DGV –𝑤𝑤42PP 

The flow for indirect predictions in ssGBLUP is: 

1) Run ssGBLUP with a reference population to obtain GEBV. In this step, 3 reference 

populations were tested: 

a) ref_2k: reference population with top bulls and top cows (n=1,896); 

b) ref_8k: reference population with all parents that were genotyped (n=8,285), this includes 

ref_2k; 

c) ref_33k: reference population with all genotyped animals born up to 2012 (n=33,162), 

this includes ref_8k; 

2) Split GEBV into all the components shown before, where DGV for an animal i in the 

reference population is calculated as below (Aguilar et al. (2010): DGVi=-
∑ gijGEBVj j,j≠i

gii  

with all elements previously defined. 

3) Calculate SNP effects using DGV from the reference population: u�= DZ'G-1(DGV) 

where 𝐮𝐮� is a vector of estimated SNP effects, D is a diagonal matrix of weights (standardized 

variances) for SNP (identity matrix in this case), and Z is a matrix of centered genotypes for each 
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animal (VanRaden, 2008). A similar approach that uses GEBV instead of DGV to calculate SNP 

effects was proposed by Wang et al. (2012). However, for numerical purposes this involves 

approximations as G matrix is formed as G=0.95ZDZ'+0.05A22 (Aguilar et al., 2010). This is 

done as a default approach to avoid singularity problems and may result in negligible error as 

shown later. 

4) Calculate DGV for young genotyped animals (DGVy):  DGVy=Zyu� 

where DGVy and Zy are direct genomic values and a matrix of centered genotypes for young 

animals not included in ssGBLUP evaluation, respectively. 

5) Combine DGVy with PA for young genotyped animals: GEBVy ≈ w1PA + w4DGVy 

where GEBVy is GEBV obtained via indirect predictions for young animals, w1 and w4 are 

weights identical for all animals and calculated based on selection index. 

Results 

Predictive ability for indirect prediction via conversion of DGV into SNP effects is 

shown in Figure 2. When the reference population included top bulls and top cows (ref_2k), the 

predictivity of indirect DGVy was lower than predictivity for traditional EBV for the three traits 

(0.23 vs. 0.29 for BW; 0.28 vs. 0.34 for WW; 0.19 vs. 0.23 for PWG).  Predictivity for GEBVy 

calculated as an index of indirect DGVy with PA was higher than those for EBV for the three 

traits (0.31 vs. 0.29 for BW; 0.36 vs. 0.34 for WW; 0.24 vs. 0.23 for PWG), however, this 

predictivity was lower than the ones from full ssGBLUP (except for WW). With larger reference 

population (ref_8k), all indirect DGVy were similar or more accurate than EBV, and the index 

had similar predictivity as the full ssGBLUP. With the largest reference population (ref_33k), all 

indirect DGVy were almost as accurate as GEBV from full ssGBLUP, with the index marginally 

improving predictivity for WW. This marginal improvement for WW may be caused by the use 
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of less than optimal genetic parameters, e.g., zero covariance between direct and maternal effects 

(to reduce computing costs). The DGVy obtained with ref_33k reference population were more 

accurate than GEBV from full ssGBLUP obtained with ref_8k reference population. 

 

Figure 2. Predictive ability of indirect predictions on 18,721 young genotyped animals when 
using reference populations ref_2k, ref_8k, and ref_33k animals to run single-step genomic 
BLUP (ssGBLUP) and derivate SNP effects. ref_2k is a reference populations that contains top 
bulls and top cows, ref_8k contains all parents that were genotyped, and ref_33k contains all 
genotyped animals born up to 2012. DGVy is direct genomic value; GEBVy is the indirect 
genomic EBV obtained by an index combining parent average and DGVy; GEBV is genomic 
predictions obtained directly from ssGBLUP when genotypes on reference and validation 
animals were considered together in evaluations.  
 

For young animals, indirect predictions via SNP effects from ssGBLUP seems a viable 

alternative as it can be done separately from the full evaluation. As SNP effects are calculated 

based on trait GEBV or DGV, indirect predictions are easily obtained for multi-trait models, as 

done in this study; multi-breed and crossbred evaluations are possible when the G matrix is able 

to account for information on all breeds. However, if young animals and particularly full-sibs are 

intensively selected, selection on the Mendelian sampling will not be accounted for, leading to 

pre-selection bias (Patry and Ducrocq, 2011). Analyses by ssGBLUP with all genotypes subject 

to selection are expected to account for pre-selection (VanRaden and Wright, 2013), because 

selection is accounted for when all information used for selection is included in the model 

(Henderson, 1975). 
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ssGBLUP with G inverted by a recursive algorithm 

 When the number of genotyped animals is large and there is a desire for using all of 

them in ssGBLUP evaluations to get direct predictions for all, including young animals, an 

algorithm that splits genotypes into proven and young animals and uses recursion to approximate 

the inverse of the G matrix was proposed by Misztal et al. (2014). This algorithm is known as 

APY, and G-1 containing all genotyped animals can be expressed as:   

G-1= �Gpp
-1 0

0 0
�+ �-Gpp

-1 Gpy
I

�Mg
-1�-GypGpp

-1 I� 

where the subscript pp stands for proven animals and py for the covariance between proven and 

young animals; each element of  Mg is obtained (for the ith young animal) as mg,i = gii - 

GipGpp
-1 Gpi  and is called genomic Mendelian sampling. In APY, the only direct inversion needed 

is for part of G that contains relationships among proven animals (Gpp), whereas all other 

coefficients are obtained through recursions.  

For this analysis, four definitions of proven animals were tested that included the 3 

definitions used for indirect predictions (ref_2k, ref_8k, and ref_33k), plus one more definition 

where 3,872 genotyped parents of genotyped animals were considered as proven (ref_4k). This 

last group was added to test if proven animals would have strong links with the young genotyped 

population.  

The greatest advantages of this algorithm are the reduction of computing cost, which is 

still cubic for proven animals, but can be linear for young animals; and the possibility of using 

large amounts of genotyped animals in ssGBLUP evaluations. The secondary advantage is 

numerical stability as the regular G matrix is singular when the number of animals is greater than 

the number of SNP markers and cannot be inverted without blending with A22. 
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Results 

Predictive ability of GEBV when the inverse of G is computed with APY is shown in 

Figure 3.  When the recursions were conditioned on ref_2k, ref_4k, ref_8k, and ref_33k, the 

procedure accounted for 67%, 88%, 97%, and 100% of predictivity gains of ssGBLUP over 

BLUP, respectively. Therefore, in ssGBLUP, using genomic recursion to invert G while 

conditioning on enough number of animals, in this case about 8,000, has the same prediction 

power as G using direct inversion. The amount of memory necessary for APY G-1 using ref_2k, 

ref_4k, ref_8k, and ref_33k was approximately 0.8, 1.6, 3.2, and 13.7 Gbytes, respectively, 

whereas the amount of memory for the regular G-1 is 21.6 Gbytes. Therefore, using APY G-1 

makes computations less costly and faster.   

 

Figure 3. Predictive ability of GEBV for 18,721 young genotyped animals when using APY 
(algorithm for proven and young animals) to invert G matrix (genomic-based relationship 
matrix) with different definitions of proven animals: ref_2k, ref_4k, ref_8k, and ref_33k. ref_2k 
is a reference populations that contains top bulls and top cows, ref_4k contains genotyped 
parents of genotyped animals, ref_8k contains all parents that were genotyped, and ref_33k 
contains all genotyped animals born up to 2012. 
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The main advantages of APY are low computing costs and numerical stability. With 

conditioning on 8,000 animals, for example, the only inverse required is for a block of G for 

8,000 animals, and additional genotypes require only linear storage and computations. 

Subsequently, computations with a large number of genotyped animals may be feasible with 

similar predictivity as in the regular inversion. APY would be the algorithm of choice for regular 

evaluations with very large number of genotyped animals. 

Conclusions 

Genomic evaluation in beef cattle using single-step genomic BLUP is feasible for either 

linear or categorical traits. Gains in predictive ability over BLUP are dependent on the 

composition of the reference population, and are greater for growth traits and small for CE. With 

a sufficient number of animals in the reference population, indirect prediction for young animals 

via SNP effects provides similar predictivity to full single-step genomic BLUP, allowing for 

quick genomic predictions without running a complete evaluation. Use of the algorithm for 

proven and young animals in single-step genomic BLUP allows for incorporation of large 

number of genotyped animals at low cost without compromising the predictive ability.  
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