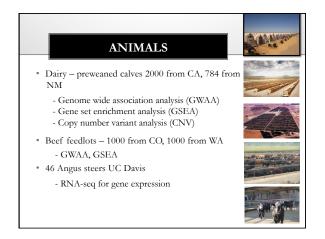


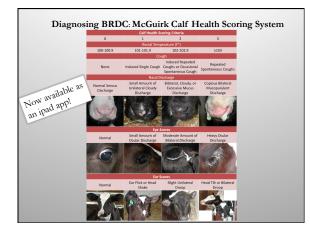
Results & Conclusions

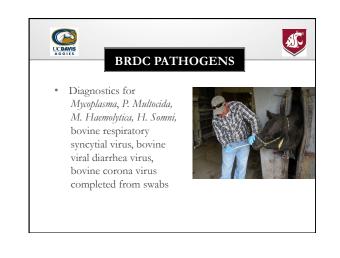
INTRODUCTION

PROBLEM

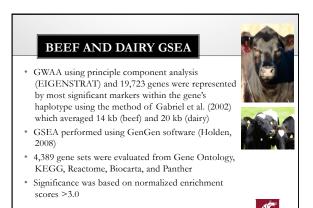
Same level of morbidity and mortality from BRDC over the past 20 years despite utilizing:

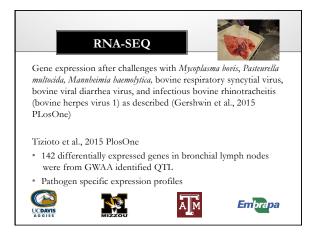

- Best management practices
 - Preventative vaccines
 - Improved treatments

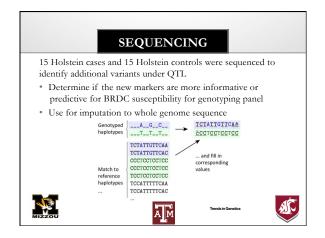

We need new approaches to reduce the incidence of BRDC in addition to our current approaches!

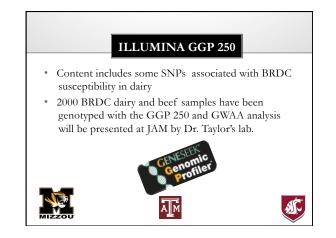

RESEARCH AIMS

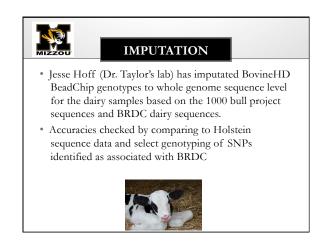
- 1. Identify genomic regions associated with BRDC
- susceptibility in beef and dairy cattle
- Genome wide association, gene set enrichment, copy number variant analyses
 - 2700 Holstein calves
 - 2000 Bos taurus steers and heifers
- · Pathogen challenge study for gene expression
- Develop BRDC genetic selection panel that can be used by the cattle industry
- 3. Develop PTA estimates
- 4. Assess how animal welfare is affected by BRDC
- 5. Assess economic impact of BRDC and selection

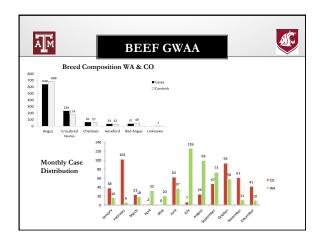


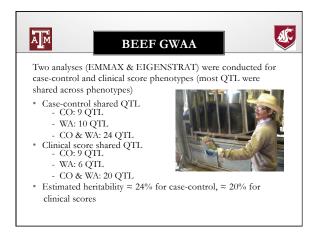





	DA		
Results (Neiberg	gs et al., 2014. I	3MC Genomics 15:1164)	
	approache case-contre	es produced highly c	oncordant
			TT
Population	# SNPs	# Chromosomal Regions	Heritability
		# Chromosomal	Heritability 21%
Population	# SNPs	# Chromosomal Regions	




DAIRY GSEA		A.	
Gene Set	# Genes (# LEG)	NES	P value
CA			
Nitric oxide stimulates guanylate cyclase	25 (18)	3.2	0.0005
NM			
Fatty acid biosynthetic process	53 (36)	4.0	0.0001
Monocarboxylic acid biosynthetic process	65 (41)	3.7	0.003
Fatty acid metabolic process	93 (50)`	3.6	0.0003
Organic acid biosynthetic process & carboxylic acid biosynthetic process	103 (56)	3.4	0.0008
Monocarboxylic acid metabolic process	143 (72)	3.4	0.001



		2				
BEEF GSE	4					
Gene Set	# Genes (# LEG)	NES	P value			
CO & WA						
Integral component of plasma membrane	137(59)	3.6	0.001			
Negative reg. cellular protein metabolic proc	207 (79)	3.1	0.003			
Steroid binding	20 (7)	3.1	0.003			
Reg. G protein coupled receptor protein signaling	40 (17)	3.1	0.002			
со						
Reg. peptidase activity	110 (45)	3.1	0.0015			
Reg of proteolysis	169 (73)	3.0	0.002			
WA						
Alzheimer disease amyloid secretase pathway	61 (27)	3.5	0.0005			
Reg RNA pathways	23 (11)	3.3	0.0003			
WA: 38 unique LEG; CO: 74; combined: 155; 79 unique LEG with challenged calves; 6 LEG overlap with dairy						

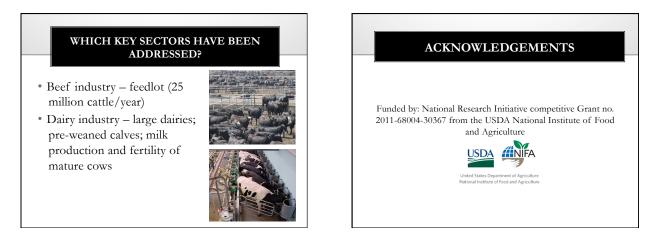
Predicted transmitting abilities are being estimated for Holsteins and these data will be presented at JAM by Drs. Gordon Spangler and Curt Van Tassell Can be incorporated into Net Merit selection indexes for use in selection of dairy

- * NSAID (meloxicam) and antibiotic treatment vs antibiotic alone in BRSV and *H. somni* challenged steers was evaluated via behavior and clinical exams used to determine if the use of NSAID benefited BRDC affected cattle (Toaff-Rosenstein et al. 2016, Applied Animal Behaviour Science)
- Access to environmental enrichment was assessed to determine if it was helpful in diagnosis of BRDC animals

ECONOMICS

Economic cost of the disease in dairy and beef

- * Estimates of economic gain from selection to reduce BRDC incidence in dairy calves (Neibergs et al. 2014)
- Economic benefits of using genetic selection to reduce the prevalence of bovine respiratory disease complex in beef feedlot cattle (Neibergs et al. 2014)



TRANSLATION TO INDUSTRY

- Common phenotype standardize and report
- · Marker panel enabling the identification of susceptible cattle
- Predicted transmitting ability for AI dairy sires for BRD susceptibility
- Ability to identify and select against cattle with BRD susceptibility
- Identify break-even point for BRD prevention based on economic analyses

