
Jamie	  Parham,	  University	  of	  Nebraska	   June	  16,	  2016	  

BIF	  2016	  Genomics	  and	  GeneAc	  PredicAon	  
Breakout	   1	  

Accounting for Discovery Bias in 
Genomic Prediction 

Jamie T. Parham, Mark Thallman,  
Larry Kuehn 
 
June 16, 2016 
Beef Improvement Federation Annual Meeting & Symposium 
Manhattan, Kansas 

Genomic Enhanced EPDs (GE-EPDs) 
• Enhance response to selection in traits: 
▫   Difficult to measure 
▫   Low heritability 
▫   Measured late in life 
▫   Sex-limited 

• Current methods of genomic selection being 
used by many breed associations 
▫   Angus, Hereford, Simmental, Charolais, Red Angus, 

Limousin, Gelbvieh, Brangus, Santa Gertrudis, etc. 

Alternative Models Underlying Genomic 
Selection 
Unweighted Weighted 

•  Every marker given equal 
emphasis 
▫   Realistic Assumption? 

•  Works well if selection 
candidates are closely related 
to phenotyped and genotyped 
animals 
▫   Accuracy diminishes rapidly 

with relationships  

•  Marker emphasis weighted by 
estimated effect on trait of 
interest 

•  Works well if selection 
candidates are closely related 
to phenotyped and genotyped 
animals 
▫   Accuracy is less dependent 

upon relationships 

Unweighted analyses not believed 
to be  subject to discovery bias 

What is Weighting? 
• Emphasis given to markers believed to have 

greater effect on traits of interest 
▫   Based on training population 

▫   Different weights for different traits 
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What is Discovery Bias? 
• Occurs because of double counting  
▫   Same data is used to estimate SNP effects as is 

used for prediction of breeding values 
!   “Winners Curse” (Goddard et al., 2009; Xu et al., 2011) 

• Not only a bias of the predictions 
▫  Also a bias of the accuracy (usually overstated) 

!   Difference between model-derived and true accuracies 

 

Model Derived Accuracy 

• Computed from the inverse of the Mixed Model 
Equations 
▫   Prediction Error Variances (PEV) 

• Requires that discovery data is analyzed 
simultaneously with prediction (Single-Step or 
One-Step) 
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Effect of Discovery Bias 
• Accuracy is overstated 
▫   MBV appear more accurate than they actually are 
▫   Blending methods of calculating GE-EPD weight 

genomic portion by its accuracy 
!   Too little emphasis placed on phenotypic 

information 
!   Inflation of genomic variance can cause genomic 

effects to be reported on an inflated scale relative to 
information derived directly from phenotypes 

 

Why Use Weighted Analyses? 

• Generally obtain greater true accuracy than from 
unweighted  
▫   Especially when animals to be predicted are not 

closely related to those in training 
!   At least partly due to the model matching the 

underlying biology more closely 
• Discovery bias is the price we pay for greater true 

accuracy 
▫   How do we account for it? 

K-Means Validation 

K=3 

Discovery 
Validation 

K-Means Validation 

K=3 

Discovery 

Validation 

K-Means Validation 

K=3 

Discovery Validation 

Objective 

•  Investigate the topic of discovery bias and 
propose a way in which to partially account for it 
▫   Determine whether removing groups of animals from a 

pedigree, with their phenotypes, during training would 
reduce discovery bias resulting from their records 
being used in training 



Jamie	  Parham,	  University	  of	  Nebraska	   June	  16,	  2016	  

BIF	  2016	  Genomics	  and	  GeneAc	  PredicAon	  
Breakout	   3	  

Discovery 

Taking K-Means Validation  
to the Limit 

k = n 

Validation 
& 

Prediction 

•  Estimate marker effects conditional on 
Discovery subset of the population  

•  Apply those effects to the Prediction 
Animal’s marker data. 

•  Each animal is 
its own group. 

Cycle Through Each  
Animal in the Population 

Discovery 

k = n 

Validation 
& 

Prediction 
•  This results in a Corrected Molecular 

Breeding Value (CMBV)  
▫   own information was not used in 

estimation of the marker effects. 

•  Each animal is 
its own group. 

Molecular Breeding Value (MBV) 

•  Summary of the genetic merit of an individual as 
measured by genomic effects 

 
• Computed as a sum of SNP effects 

SNP Analysis Model 

• One random effect per SNP, each with its own 
variance parameter 
▫   i.e. Weighting 
 

• BLUP predictions of SNP effects and REML 
estimates of SNP variances 
▫   Deterministic algorithm (not MCMC) 
 

Correcting for Discovery Bias 
•  Step 1: Estimate marker effects conditional on 

the entire population (only once) 
▫   Results in an MBV for each individual 

•  Step 2: Adjust the effects for each individual for 
dropping its information from the data set 
▫   Results in a Corrected MBV (CMBV)  
▫   This latter step requires minimal computational 

effort, even though it is applied to each individual 
in the population 
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Materials and Methods 
• Animals 
▫   Cattle in the GPE population at USMARC 
!   Cycle VII of GPE (Snelling et al., 2010) 

!   Represented 18 industry breeds 
▫   Used 2,600 animals with BovineSNP50 genotypes 
!   107 sire groups (1-107 animals per group) 
!   Simulated phenotypes for non parents only 

!   Resulted in 107 non overlapping paternal half sib groups 
!   Population structure simplified computations for replicated data 

Simulated Phenotypes 
 

y = Qq + e 
 

y = vector of simulated phenotypes 
Q = matrix of Quantitative Trait Nucleotide (QTN) 

genotypes 
q = vector of simulated QTN effects 

e = vector of simulated residuals 
 

True Breeding Value (TBV) = u = Qq 

SNP and QTN Selection 

• Used real data from the BovineSNP50 chip 
•  Total of 2,500 SNP used as markers for MBVs 
▫   Selected regions of 250 nearly contiguous SNP on each of 10 

chromosomes (2,500 total SNP) 
▫   Monomorphic SNP were removed 
 

•  Total of 35 SNP selected as QTN 
▫   Moderate frequency (q = 0.29-0.30) 
▫   Located within regions of the 2,500 marker SNP 

 

Analysis of Simulated Data 

•  Step 1: Estimate marker effects conditional on 
the entire population (only once) 

•  Step 2: Adjust the effects for each paternal half 
sib group by dropping their information from 
the data set 
▫   Removed closest relatives for each individual 

Realized vs. Model Derived Accuracy 

Comparison of Accuracies of Simulation (nr = 105)  	  	  
Realized Accuracy	  	   Model Derived Accuracy	  	   Discovery Bias	  

Mean	  	   SE	  	   Mean	  	   SE Mean	  
MBV	  	   0.687	  	   0.006	  	   0.960	  	   7.11e-5	  	   0.273	  

CMBV	  	   0.620	  	   0.007	  	   0.954	  	   7.59e-5	  	   0.334	  

MBV = Uncorrected Molecular Breeding Value; CMBV = Corrected MBV 

• Realized Accuracy is the correlation between 
MBV and TBV 

• Model derived accuracy computed from PEV 

Problem… 

• Dropping phenotypes of each individual and 
their closest relatives had a negative effect on the 
realized accuracy 

• Challenge to incorporate phenotypes without 
influencing the estimation of SNP effects 
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A Solution: Two Trait Post-Analysis 

• Used to reintroduce phenotype into the analysis 
•  Trait 1: simulated phenotype 
▫   GE-EPD are predictions of trait 1 

•  Trait 2: MBV/CMBV from analysis excluding 
paternal half sib group 

Realized vs. Model Derived Accuracy 

Comparison of Accuracies of Simulation (nr = 105)  	  	  
Realized Accuracy	  	   Model Derived Accuracy	  	   Discovery Bias	  

Mean	  	   SE	  	   Mean	  	   SE Mean	  
MBV	  	   0.687	  	   0.006	  	   0.960	  	   7.11e-5	  	   0.273	  

CMBV	  	   0.620	  	   0.007	  	   0.954	  	   7.59e-5	  	   0.334	  

GE-EPD 
	  

0.716 0.006 0.942 6.85e-5 0.226	  

CGE-EPD	   0.721	   0.007	   0.865	   5.84e-5 0.144	  

MBV = Uncorrected Molecular Breeding Value; CMBV = Corrected MBV;  
GE-EPD = Uncorrected Genomic Enhanced Expected Progeny Difference;	  	  

CGE-EPD = Corrected GE-EPD 

Conclusions from Thesis 
• Method of accounting for bias decreased gap 

between model derived and realized accuracy 
▫   Believed to partially account for bias 

•  True accuracies of genomic prediction were 
higher when accounting for bias than when not 
accounting for it 

• Accounting separately for polygenic effects 
improved accuracy for uncorrected predictions 
▫   Using the two trait model 

• Overall, promising “first step” method 

Moving Forward 

• Removing paternal half sib groups was an 
expedient proof of principle 
▫   Not a final solution 

• Optimal correction for each individual in a 
general pedigree is yet to be determined 

The Traditional Genetic Prediction 
Paradigm 
• A single analysis conducted for an entire 

population 
▫   Optimized to predict differences among all 

members of the population simultaneously 
▫   Results in an unnecessary constraint on 

optimization 

A New Genetic Prediction Paradigm 

•  Individual analyses conducted to optimize 
prediction for each animal within a population 
▫   Excluded data customized for each individual 
▫   Predicts the individual relative to population 
!   Rather than directly to specific individuals 
▫   May require small base adjustment for each 

individual 
• Requires thinking outside of the traditional “box” 
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Conclusion 
• Weighted and Unweighted analyses differ 
▫   Weighted analyses subject to discovery bias, but 

can result in more accurate predictions 
!   Improvement in accuracy especially important for 

beef cattle populations 
• Although we may not be able to eliminate the 

effects of discovery bias, we can mitigate them 
▫   Results of thesis research promising and 

supportive 

Questions? 


