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Introduction 

 Misztal et al. (2009) and Aguilar et al. (2010) introduced approaches for single-step 
analyses that combined genotyped and non-genotyped animals in the same analysis on the basis 
of pedigree and genomic relationship matrices and their inverses. Fernando et al. (2014) and 
Garrick et al. (2014) presented an alternative computing algorithm for the same model that gives 
identical genomic enhanced EPDs but has different computational properties. That single-step 
approach, called the Hybrid Model, provides solutions for the marker effects and the imputation 
errors for non-genotyped animals, rather than directly providing the EBVs.  It has computational 
advantages over that of Misztal et al. (2009) in that it does not require any large matrix inverse, 
and it has the ability to implement marker selection methods such as Bayes C (or other forms of 
the Bayesian alphabet).  Implementing a marker selection approach resulted in a substantial 
increase in the accuracy of the predictions from the same amount of genotype data.  Our aim in 
this paper was to present an alternative formulation of the mixed model equations (MME) from 
those presented in Fernando, et al. (2014) and Garrick, et al. (2014).  Putatively called the Super 
Hybrid Model (SHM; Fernando and Garrick, unpublished), the new MME are even easier to 
assemble and solve then those of the Hybrid Model. 

 Additionally, we present here results from implementing these models in the Biometric 
Open Language Tools software package (Bolt) available from ThetaSolutions LLC.  Designed 
specifically to work with commodity class General Purpose Graphics Processing Units (GPU), we 
have solved and sampled very large, complex multiple trait SHM that include maternal effects.  In 
addition to the original Hybrid Model, and the SHM, we have implemented the original single-
step approach (SSGBLUP) of Misztal et al. (2009) in Bolt.  Breeding companies and organizations 
in several countries are currently converting their routine evaluations to use Bolt, including the 
Pan American Cattle Evaluation (PACE) of Hereford cattle and the multibreed International 
Genetic Solutions (IGS) evaluation of Angus, Red Angus, Gelbvieh, Limousin, Maine Anjou, 
Shorthorn, and Simmental pure- and crossbred cattle from US and Canada.  Here we discuss 
implementation of Bolt for IGS for their twelve participating beef breed associations. 

The Super Hybrid Model 

 The basic form of the SHM includes the usual fixed effects; marker effects, α; breeding 
value effects for animals that are not genotyped, un; and residual effects, e.  The model equation is 

𝑦 = 𝑋𝑏 + 𝑍'𝑢' + 𝑍)𝑀)𝛼 + 𝑒 

where X is an incidence matrix of fixed effects, b, on observations in y;  𝑍 = 𝑍' 𝑍) , is an 
incidence matrix of animals with observations in y; g and n subscripts refer to animals who were 
genotyped and animals who were not genotyped respectively; M is the matrix of marker values 
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and 𝛼 are the random additive marker effects; 𝑢' are the random breeding values for animals 
who were not genotyped and e are the residual effects on y.  

 In large problems the only substantial amount of work is the formation of the diagonal 
block for the marker effects.  However, Bolt has optimized routines that have achieved over 
7TFlops on inexpensive enthusiast class hardware when performing this computation making it 
highly tractable.  Additionally, the computation of the diagonal blocks is performed only once, in 
parallel, during assembly of the MME.   

We have developed optimized asynchronous parallel methods for high performance 
sampling of the dependent variables (Golden et al., 2014).  Using Gibbs sampling results in high 
quality estimates of the prediction error variances including the variance of functions of the EPD 
such as economic indexes.  Sampling also permits the implementation of marker selection 
models which results in substantial increases in accuracy over SSGBLUP which always fits all 
markers. 

 Other features of the SHM formulation of the MME include no large inverse matrices as 
are required in SSGBLUP or solutions involving the forward/backward substitution solve (or 
other solve) at each round of sampling as was required for efficient implementation of Fernando 
et al. (2014). 

Expanding the SHM to include extra polygenic effects is trivial and extending it to 
maternal effects and multiple traits is straight forward.   Including an extra polygenic effect is 
important when the markers do not describe all the additive genetic variance of the traits.  This 
has been shown to be the case with current marker information (Saatchi and Garrick, 2016).  
Failure to do so results in widely-used sires with high accuracy EPD having slightly different 
genomic prediction estimates compared to those from traditional pedigree analyses. 

The Bolt Software 

 Bolt is a collection of over one hundred software tools implemented as a set of 
commands used to manipulate data and the matrices involved in statistical problem assembly and 
solution.  Combining Bolt with an environment such as the Born Again Shell (bash) or other 
computer language like environments (e.g., Python) provides a full featured language the 
professional analyst can use for many classes of statistical analysis of very large data sets. 

 Bolt is supported in the Linux environment and is designed to use low-cost computer 
workstation hardware with at least one general purpose CUDA class graphics processing unit 
(GPU).  GPU computing has become a standard method in scientific computing for achieving 
very high performance computations at a relatively low cost (Owens, et al., 2008).  Originally 
developed to process data for video editing and the computer gaming industry, GPU were 
adapted to provide general purpose computing for numerically intensive problems.  Two widely 
used programming environments available for GPU computing include OpenCL and CUDA.  
The CUDA environment is available only for use with GPU designed by the NVidia Corporation 
while OpenCL can be used on other manufacturers’ GPU (e.g., Advanced Micro Devices, Inc.) 
as well as Nvidia’s GPU.  However, the CUDA programming environment developed by 
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NVidia, is more fully featured and exceeds most performance benchmarks compared to other 
manufacturers’ GPU.  Particularly, the sparse matrix libraries and basic linear algebra libraries in 
the CUDA environment are highly optimized. CUDA is freely available and is well supported.  
NVidia sells both enterprise and enthusiast class GPU.  We have found that lower cost enthusiast 
class GPU actually perform faster than the enterprise class GPU and are a fraction of the cost.  
Although Bolt supports both types of processors, we recommend its use with low cost consumer 
class workstations using enthusiast class GPU in the CUDA environment and Linux. 

 Bolt is designed not only to use GPU but to maximize the parallel execution capability of 
multiple core CPU, often achieving full so-called embarrassingly parallel execution.  
Additionally, Bolt is designed to take advantage of systems with multiple-GPU installed.   Bolt’s 
design makes it easy for professional analysts to make decisions about applying CPU cores and 
GPU to a single analysis or splitting the CPU cores and GPU among different problems.  The 
complexity of CPU and GPU control is largely abstracted from the analyst so that the best 
analytical methods to apply to a problem can be focused on. 

The IGS International Genetic Evaluation 

 Lead by a consortium of beef breed associations, the International Genetic Solutions 
organization has worked with Theta Solutions, LLC to implement a multi-breed genetic 
evaluation including data from twelve different beef breed associations from North America.   

The first prototype analysis included thirteen traits’ representing threshold and 
continuous observations from 6,987,238 pedigree observations including 45,176 observations on 
animals with genotypes, and 5,663,965 animals with performance observations.  Traits were run 
in meaningful multiple trait combinations.  For example, EPDs for birth weight, weaning weight, 
milk, and total maternal were solved together.  The model included extra polygenic effects for 
birth additive direct, weaning additive direct and weaning additive maternal effects. 

The analysis was performed on a computer built on an ASRock X99 Extreme11 
motherboard with an Intel Xeon E5-2643 V3 (6 core at 3.4GhHz) processor.  It had 64G of ECC 
DDR4 memory and four Titan X GPU.  No overclocking of the CPU or GPU was performed.  
Our previous work (Golden, et al., 2015) has shown that substantial benefit from overclocking 
can be obtained.  However, the E5-2643 cannot be overclocked.  

The timings given here are for the so-called MSRP (Saatchi and Garrick, 2016) subset of 
genetic markers.  The strategy implemented for the IGS analysis is to use a Bayes C0 analysis for 
an informative subset of markers identified from a Bayes C analysis (with pi=.95) applied to 
higher denity (e.g. 70k markers) periodically performed to refresh and validate the subset list.  
Our as yet unpublished studies have shown that this results in equivalent accuracies of the Bayes 
C analysis predictions’ and are substantially more accurate than Bayes C0 of larger marker sets 
(e.g., BovSNP50).  Another advantage is these analyses using relevant subsets of markers 
complete relatively quickly, allowing for new analyses to be performed when new genotype data 
are received.  This way, IGS can turn around results to their members and customers as 
frequently as daily.   The wall-clock time to assemble the SHM for this analysis was 50 minutes 
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and 25 seconds. Once assembled the time to solve the equations to obtain the EPDs using a PCG 
solver was 9 minutes and 39 seconds.   

A Bayes C0 sampling strategy with four parallel chains of ten thousand samples each 
after being seeded with the PCG solver solutions was used to obtain prediction error variances.  
The wall clock time to obtain the prediction error variances was 5 hours and 44 minutes. 
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