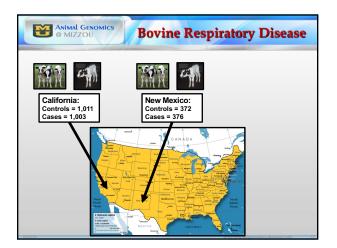
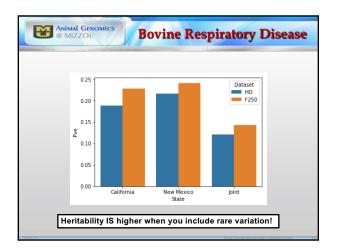
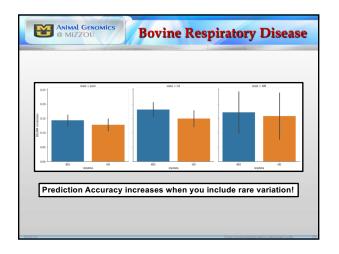
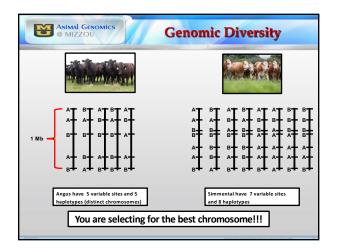

EFFICIENCE	Mics	Feed Effi	ciency
RH SUCATION		No. of Variants	No. of Samples
	BOVGv1	47,843	1
	GGP-90KT	76,999	2
	GGP-F250	227,234	4,463
	GGP-LDV3	26,504	40
	BovineHD	777,962	1,638
	ICBF IDBV3	53,450	315
	BovineSNP50	58,336	7,018
	Total		13,477

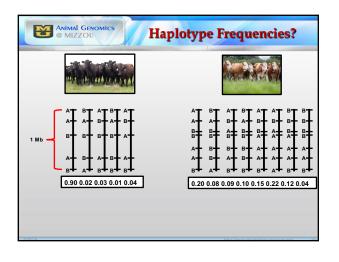

Producer Applications Committee, 2019 BIF Symposium, Brookings, S.D.

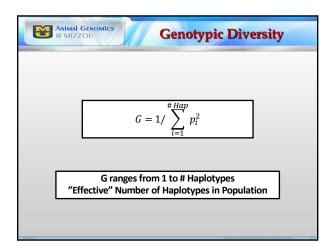

Aics	Feed	Effic	iency
Breed	Average Ancestry %	SD %	
Angus	31.87	±24.67	
Braunvieh	1.6	± 4.13	
Brown Swiss	0.3	± 1.47	
Charolais	6.91	± 13.66	
Gelbvieh	6.69	± 13.64	
Guernsey	0.56	± 2.01	
Hereford	17.39	± 29.19	
Holstein	2.03	± 3.79	
Indicine	0.17	± 1.56	
Japanese Black	0.22	± 4.34	
Jersey	0.26	± 1.40	
Limousin	3.08	± 11.40	
N'Dama	0	± 0.17	
Red Angus	16.02	± 20.06	
Romagnola	0.19	± 1.20	
Shorthorn	3.7	± 4.90	
Simmental	9.01	± 14.51	

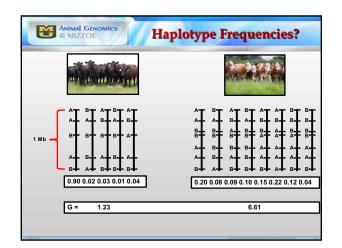
Trait	h²	Va	Ve
RFI	0.45	2.3029	2.790
MMWT	0.56	112.73	88.334
DMI	0.5	5.1659	5.081
ADG	0.42	0.1796	0.2462

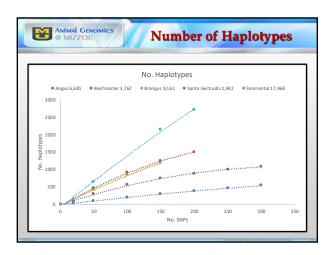

Research article Open A	ccess	Re	search article Open Access				
QTLs associa	ted with dry matter intake, metabolic	0	enome-wide assoc	iation study for f	eed efficiend		
	ght, growth and feed efficiency have	a	and growth traits in U.S. beef cattle				
Mahdi Saatchi, Jonathan E Helen Yampara-Iquise, Krist Elias Marques, Holly L Neib Warren M Snelling, Matthes BMC Genomics 2014 15:10 https://doi.org/10.1186/142	across 4 beef cattle studies here, and 10 cole, the trades, tend (free), singless 1. None, a class, back back of the start of the start of the start of the start of the start of the start of the start of the trades of the start of the start of the start of the Start Start of the start of the start of the start of the Start Start of the start of the start of the start of the start of the start of the start of the start of the Start Start of the start of the	N N N	ristspher M. Seebury III, David L. Okfe ette A. Falley, Eric K. Bhattanai, Maral I in Margana-Jauka, Kitate A. Johoson By L. Neisers, Robert D. Schnabel, D. rise J. Garrick and Jenny F. Taylor III C. Genomics 2027 18:386 ps://doi.org/10.1386/s12364-017-3256 coll-ddi 26 October 2016 Accepted:	Molael, Harvey C. Freety, Stephanie n, Monty S. Kerley, JaeWoo Kim, Dan aniel W. Shike, Matthew L. Spangler, lay © The Author(s). 2017	L Hansen, iel D. Loy, Elisa Marques, Robert L. Weaber,		
	Trait	850K	h² HD	SNP50			
	RFI	0.45	0.34	0.4			
	MMWT	0.45	0.34	0.4			
			0.10	0.0			
	DMI	0.5	0.32	0.3			
	ADG	0.42	0.26	0.29			
	No. Animals	11,505	3,973	5,047			
	Av. No. Animals/Analysis		1,310	1,262			
	Populations x Replicates		3 x 2	4 x 1			
	· · ·						
	Heritability is higher v	when you in	clude rare variation!]	_		

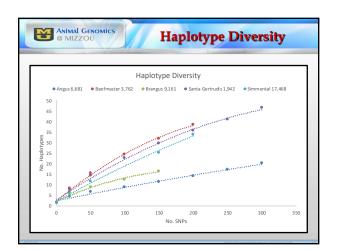


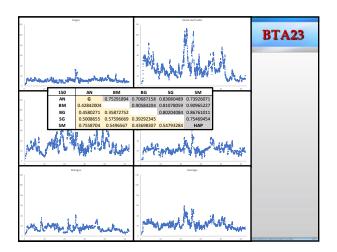


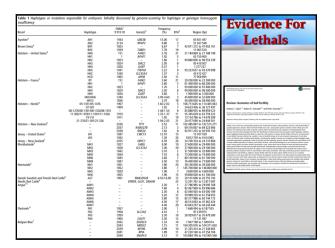

Producer Applications Committee, 2019 BIF Symposium, Brookings, S.D.

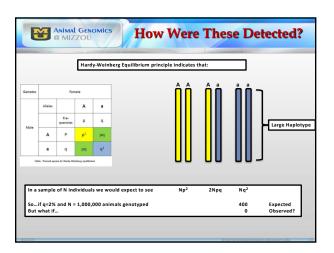


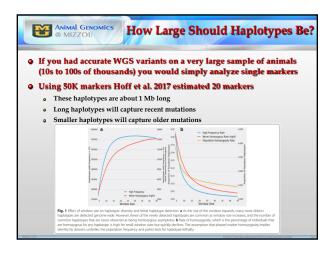


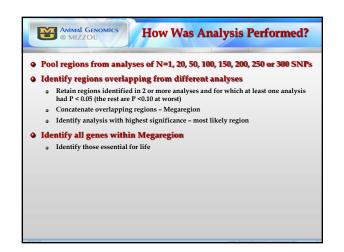


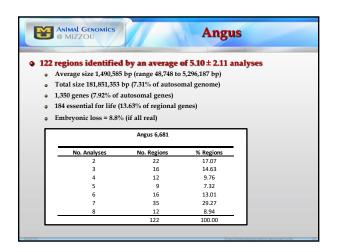


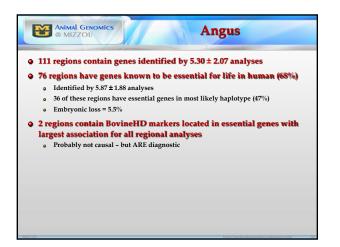

Breed Genotypes No. Animals 1 20 50 100 150 200 250 3 Angus 50K->850K 6,661 ✓ <td< th=""><th>s 50K->850K 6,681 V V V V V V V V</th></td<>	s 50K->850K 6,681 V V V V V V V V
seetmaster SUK>8SUK 3,/62 V V V V V V	naster SUK->85UK 3,762 V V V V V V
Brangus 50K>850K 9,161 V V V V V Santa Gertrud 50K>850K 1.942 V V V V V V V V	
Santa Gertrud 50K->850K 1,942 V V V V V V V V V V V V V V V V V V V	








Producer Applications Committee, 2019 BIF Symposium, Brookings, S.D.



Ľ	Animal Ge @ MIZZO	U H	ow Was A	nalysis	Performed
	anlanning	windows of N=	1 20 50 100	150 200 25	O or 200 SNIPs
	8 separate a		-1, 20, 30, 100,	150, 200, 23	0 01 300 31NFS
	•	chromosome 1 SNP	at a time		
•	Step along	cinomosome i Sivi	at a time		
a Te	st everv ha	plotype with no	a homozvgote	8	
	•	haplotype frequen			
-			cy		
۹	Retain thos	e with P < 0.10			
٥	Concatenate	e all overlapping re	gions - select larg	gest frequenc	y and smallest P-
	value to rep	present region			
			Angus 6,681		
		Haplotype Size (SNPs)	No. Haplotypes P<0.10	118	
		20	6.563	457	
		50	12,995	327	
		100	19,165	241	
		150	23,288	200	
		200	26,337 29.621	190 184	

NIFA

