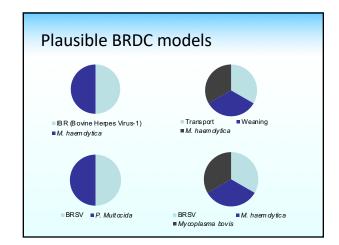

Larry Kuehn and Tara McDaneld, U.S. Meat Animal Research Center

Bovine respiratory disease complex (BRDC)

- Most costly disease to the cattle industry
 - Cattle treated for BRDC expected to return at least \$40 less than untreated calves Fulton et al., 2002
- Relative economic value is 37.7 times that of yearling weight (Van Eenennaam and MacNeil, 2011)
- Antibiotics, vaccination, and management all can effectively decrease incidence
 - Concerns over antibiotic resistance
 - Hard to control all beef cattle sectors

BRDC pathogens


- Bacterial infections
 - Mannheimia Haemolytica
 - Most implicated shipping fever
 - Leukotoxin, lipopolysaccharide
 - Most defined/studied
 - Pasteurella multocida
 - Mycoplasma bovis
 - Histophilus somni

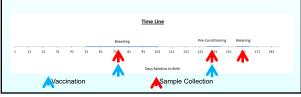
BRDC pathogens At least five primary viral agents Parainfluenza-3 (Pl₃) Infectious Bovine Rhinotracheitis (IBR) Bovine Viral Diarrhea (BVD; 2 strains) Bovine Respiratory Syncytial Virus (BRSV) Bovine Coronavirus (BCV) Implication relatively recent Gateway to bacterial infection, likely due to damage to respiratory clearance

Taylor et al., 2010

Environmental factors • Feedlot - Entry weight, gender, transport distance, commingling, receiving ration, prophylactics, social dominance/disposition

- Prior treatment
 - Vaccines, passive colostrum transfer, persistent infection (BVDV), weaning management
- STRESS
 - Immune system dynamics

Difficulties of BRDC treatment records as phenotypes

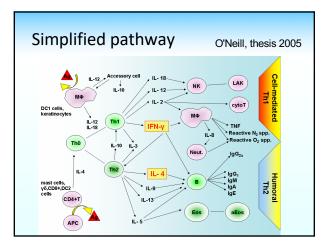

- Disease incidence measured as 0 or 1
- Subclinicals/shedders analyzed as healthy
- Symptoms not precise indicators
- Multiple pathogens may cause the same disease/set of symptoms
- Prior exposure often unknown
- Can't guarantee level of exposure

Overcoming difficulties

- Large population size
 - Subset of USMARC Germplasm Evaluation Program
 - All spring-born natural service calves
- Data collection
 - Improve quality of diagnoses/necropsy
 - Increased number of measures
 - Identify subclinical animals
 - Identify susceptible animals in years with low exposure

USMARC disease resistance population (700-800 hd/yr)

- Vaccinated with BRSV/IBR/PI3/BVDV vaccine
- Nasal samples taken at each point(8 yr) Blood phenotypes measured (10 yr; vaccine response)
- Lung Scores recorded at harvest (~ 420d)
- Resulted in several related projects


Genetic correlations (delta)

	Diag	Inosis	Lung	Lesions
Trait	Corr	SE	Corr	SE
Neutrophils	-0.16	0.33	-0.28	0.39
Lymphocytes	-0.67	0.21	0.22	0.30
Monocytes	0.12	0.32	0.29	0.37
Eosinophils	0.16	0.27	-0.39	0.34
Basophils	-0.23	0.27	-0.52	0.37

Some indication of cell-mediated response to vaccine

» Leach et al., 2012

· Less luck with humoral response

Improving BRDC diagnosis

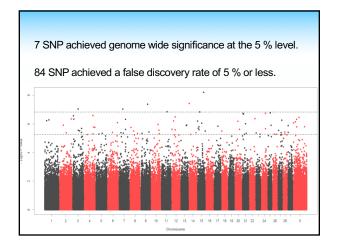
- Additional measures subclinicals
 - Chute scoring system (Love et al., 2014)
 - Severe lung lesions
 - Look at combination of heath records and other diagnostic phenotypes
- Need to be cautious of traditional multi-trait analysis (likely mixture distribution; Bishop and Woolliams, 2010)

Assessing BRDC risk

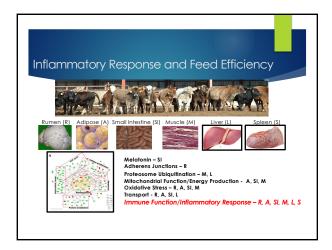
- Vaccine/antigen response
 - Titers vs. neutralizing antibodies
 - Cell-mediated vs. humoral responses
- Cell counts (T, B, CD, Neut, Macro, etc.)
- Acute phase/response proteins
- Cytokine pathways
- Measures of stress and stress response – Interaction with all of the above
- Would prefer all in response to a stimulus

Resource populations

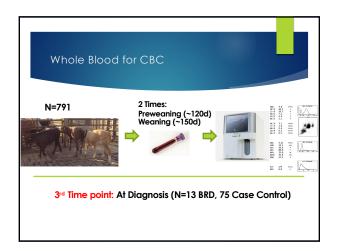
- Academic institutions
 - Easier to collect blood/tissues for immunological measures
 - Hopefully more heritable
 - Limited numbers of animals
 - 4,500 spring calves/yr at USMARC, 200-300 cases
 - Commercial Partners (DNA pooling)
 - Collections at commercial abattoirs
 - Commercial feedlots


Methods

- 11,520 lungs were sampled from a central Nebraska beef processing plant with a throughput of 2,500 cattle per 8 h shift.
- On average 900 lungs were sampled per day.
- The majority of the lungs came from cattle raised without antibiotics.
- Case Control Definitions
 - Half (5,760) had severe lung lesions (Case)
 - Half (5,760) had mild or no lesions (Control).


Methods


- Lungs were scored as severe if they had greater than 50 % of lung tissue affected with lesions associated with BRDC including pleural adhesion to the thoracic cavity.
- Sampling variation in lung lesions– Lesion (L), Normal (N); green for sample and red for don't sample.
 - LLLLLLLNNNNNNNNNLLLLLLLLLLNNNNN
 - LLNLNNLLNNNLLLNNLLLNNLLNLNNL
 - NNNNNNNNNNNNNNNNNNNNNNNNNNN


Larry Kuehn and Tara McDaneld, U.S. Meat Animal Research Center

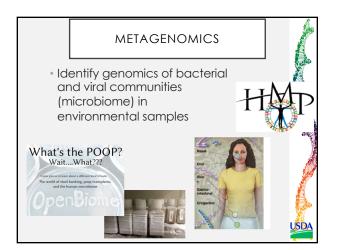
C	BC Dat	a from	RPD	and C	C Anin	ade	
		u non				iuis	
						-	
ь Ц	iaher levels of	and the second			abile woro de	to at a d in the	e sick animal
	ompared to the						
C	ompared to th	he asymptor	natic contro	ls at the time	e of diagnosi	s (Pcorrected<0	.05).
Ci ► Lo	ompared to th ower levels of	he asymptor monocytes	natic contro were identifie	ls at the time ed at weanir	e of diagnosi ng (P<0.05) ir	s (Pcorrected<0 n those calve	.05). es that went o
LC LC	ompared to th	he asymptor monocytes) in the feed	natic contro were identifie	ls at the time ed at weanir	e of diagnosi ng (P<0.05) ir	s (Pcorrected<0 n those calve	.05). es that went o
LC LC	ompared to th ower levels of develop BRD	he asymptor monocytes) in the feed reaning.	natic contro were identifie lot compare	ls at the time ed at weanir d to calves t	e of diagnosi ng (P<0.05) ir hat remaine	s (Pcorrected<0 n those calve d asymptom	.05). es that went o
LC LC tc	ompared to th ower levels of develop BRD	he asymptor monocytes o in the feed reaning. Asymptomat	natic contro were identifie	ls at the time ed at weanir d to calves t	e of diagnosi ng (P<0.05) ir	s (Pcorrected<0 n those calve d asymptom	.05). es that went o
LC LC tc	ompared to th ower levels of develop BRD	he asymptor monocytes o in the feed reaning. Asymptomat Time 1	natic contro were identifie lot compare ic Control Anir	ls at the time ed at weanir d to calves t	e of diagnosi ng (P<0.05) ir hat remaine	s (Pcorrected<0 n those calve d asymptom BRD (n=13)	.05). es that went o
LC LC	ompared to the owner levels of ordevelop BRD 2 days after w	he asymptor monocytes o in the feed reaning. Asymptomat Time 1 Ave(SD) ²	natic contro were identifie lot compare ic Control Anir Time 2	Is at the time ed at weanir d to calves t mals (n=75) Time 3	of diagnosi ng (P<0.05) ir hat remaine Animals with Time 1	s (Pcorrected<0 n those calve d asymptom BRD (n=13) Time 2	.05). es that went o aatic in the fir Time 3
LC LC	ompared to th ower levels of develop BRD 2 days after w	he asymptor monocytes y o in the feed reaning. Asymptomat Time 1 Ave(SD) ² 11.3 (0.29)	natic contro were identifie lot compare ic Control Anir Time 2 11.2 (0.32)	Is at the time ed at weanir d to calves t mals (n=75) Time 3 10.2 (0.29)	of diagnosi ng (P<0.05) ir hat remaine Animals with Time 1 11.5 (0.59)	s (Pcorrected<0 n those calve d asymptom BRD (n=13) Time 2 11.4 (0.65)	.05). es that went o aatic in the fir Time 3 11.5 (0.58)
LC LC	ompared to the ower levels of develop BRD 2 days after w Parameter ¹ WBC (10%L) NEU (10%L)	he asymptor monocytes 0 in the feed reaning. Asymptomat Time 1 Ave(SD) ² 11.3 (0.29) 3.7 (0.14)	natic contro were identifie lot compare ic Control Anir Time 2 11.2 (0.32) 3.6 (0.17)	Is at the time ed at weanir d to calves t mals (n=75) Time 3 10.2 (0.29) 2.8 (0.17)	of diagnosi ng (P<0.05) ir hat remaine Animals with Time 1 11.5 (0.59) 3.4 (0.29)	s (Pcorrected<0 n those calve d asymptom BRD (n=13) Time 2 11.4 (0.65) 3.7 (0.35)	.05). as that went of the fir Time 3 11.5 (0.58) 4.9 (0.35)
LC LC	ompared to the ower levels of develop BRD 2 days after w Parameter ¹ WBC (10%L)	he asymptor monocytes y o in the feed reaning. Asymptomat Time 1 Ave(SD) ² 11.3 (0.29)	natic contro lot compare ic Control Anir Time 2 11.2 (0.32) 3.6 (0.17) 6.8 (0.25)	Is at the time ed at weanin d to calves t mals (n=75) Time 3 10.2 (0.29) 2.8 (0.17) 6.7 (0.21)	e of diagnosi ng (P<0.05) ir hat remaine Animals with Time 1 11.5 (0.59) 3.4 (0.29) 7.2 (0.42)	s (Pcorrected<0 n those calve d asymptom BRD (n=13) Time 2 11.4 (0.65) 3.7 (0.35) 7 (0.5)	.05). as that went (actic in the fir Time 3 11.5 (0.58) 4.9 (0.35) 5.9 (0.43)
LC LC	Parameter ¹ WBC (10%L) LYM (10%L)	he asymptor monocytes) in the feed reaning. Asymptomat Time 1 Ave(SD) ² 11.3 (0.29) 3.7 (0.14) 6.8 (0.21)	natic contro were identific lot compare ic Control Anir Time 2 11.2 (0.32) 3.6 (0.17) 6.8 (0.25) 0.61 (0.022)	Is at the time ed at weanin d to calves t mals (n=75) Time 3 10.2 (0.29) 2.8 (0.17) 6.7 (0.21) 0.42 (0.019)	e of diagnosi ng (P<0.05) ir hat remaine Animals with Time 1 11.5 (0.59) 3.4 (0.29) 7.2 (0.42) 0.57 (0.04)	s (Pcorrected<0 n those calve d asymptom BRD (n=13) Time 2 11.4 (0.65) 3.7 (0.35) 7 (0.5) 0.47 (0.044)	105). as that went of the firme 3 11.5 (0.58) 4.9 (0.35) 5.9 (0.43) 0.46 (0.038)

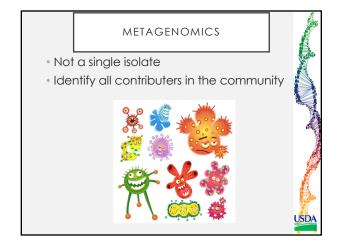
JSD/

Conclusions

- Need a multi-pronged approach of large animal volumes and intensive, more highly heritable phenotypes
 - Much of this work is underway by multiple groups
 - Cost saving measures such as pooling are effective
 - Just the first stage of examining candidate phenotypes

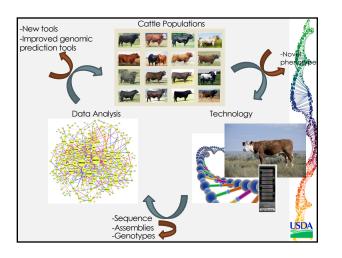
METAGENOMICS AND BOVINE RESPIRATORY DISEASE

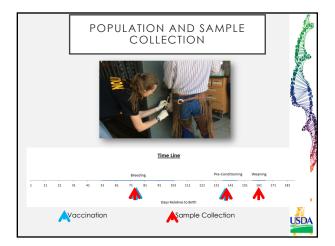

T. G. McDaneld ISDA Meat Animal Research Ce

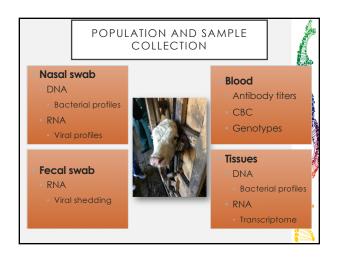

Clay Center, NE, 68933, USA

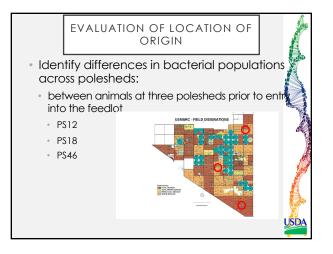
BOVINE RESPIRATORY DISEASE (BRD) COMPLEX

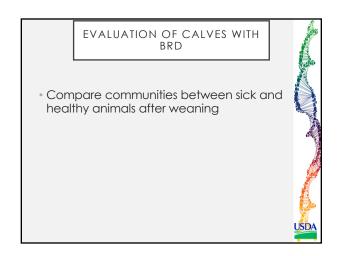
- BRD one of the most studied livestock diseases (Fulton, 2009)
- Despite decades of research, effective immunization or antimicrobial therapies have not been developed that substantially reduce the prevalence or severity of BRD

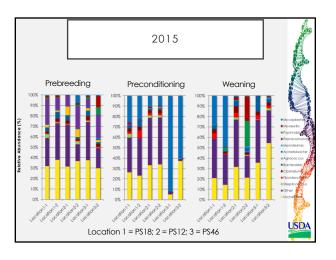


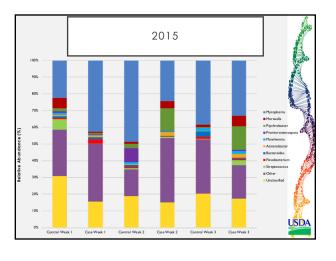


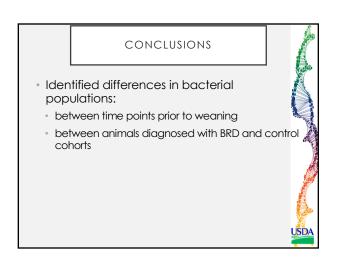


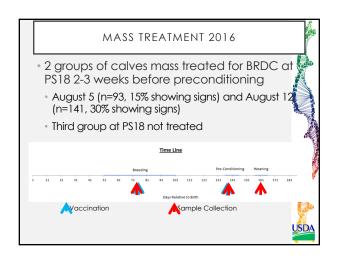


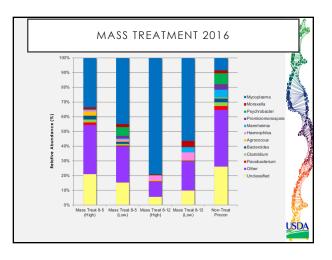

Larry Kuehn and Tara McDaneld, U.S. Meat Animal Research Center

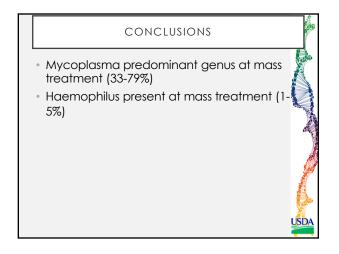


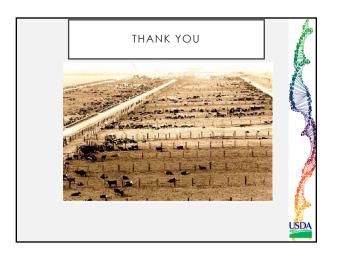







2019 BIF Symposium, Selection Decisions, Brookings, S.D.


Larry Kuehn and Tara McDaneld, U.S. Meat Animal Research Center



Larry Kuehn and Tara McDaneld, U.S. Meat Animal Research Center

