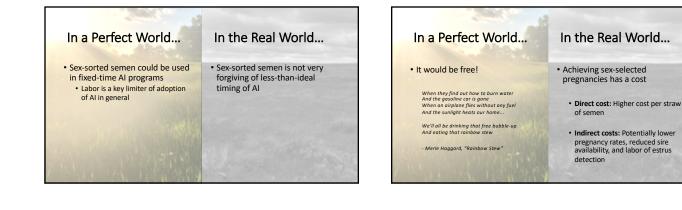
Timed AI with Sex-Sorted Semen: Research and Application in Commercial Beef Herds

Division of Animal Sciences Jordan Thomas Assistant Extension Professor ThomasJor@Missouri.edu Office: (573) 882-1804 @MizzouRepro

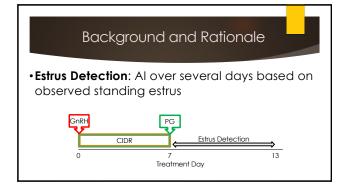
Sex-Sorted Semen: Why Do We Care?

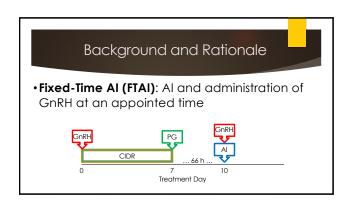
 For any one mating always more valuat
 Terminal versus ma potential

• The questions:


• What is the value c

- What is the true cc semen?
- Is the value differe heifer calf large en

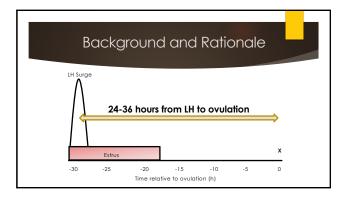

The High Cost of Low Pregnancy Rates

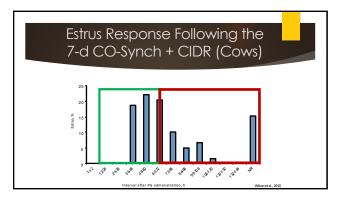

- Unlike conventional dairy, beef production systems are seasonal
 Fixed-length breeding season
- Low first-service pregnancy rates are costly
 Decreased lifetime productivity of replacement heifers
 - Younger age and lighter weight of calves at weaning
 - Reduced likelihood of cows becoming pregnant early in the breeding season next year

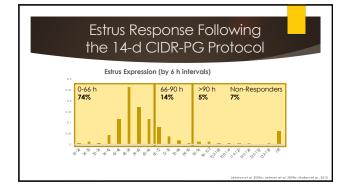
Overarching Research Question:

Can we optimize *male* fertility in timed AI programs by better managing the *female*?

Background and Rationale

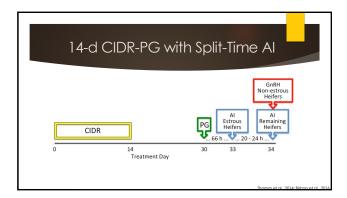

Advantages of Fixed-Time AI

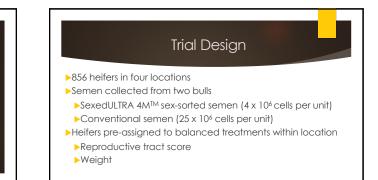

- Al <u>all</u> cows at <u>one time</u> on <u>one day</u>
- Eliminate estrus detection
- ▶<u>It works</u>


Background and Rationale

Disadvantages of Fixed-Time AI

- ► Lower fertility for cows that fail to express estrus ► 27% lower pregnancy rate (Richardson et al., 2016)
- ► Al is less precisely aligned with ovulation

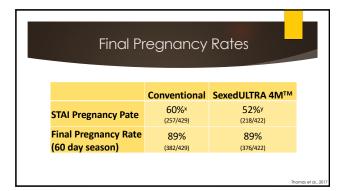


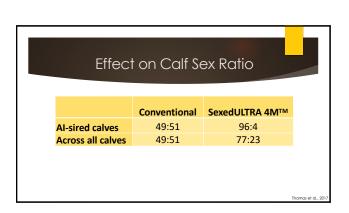


Mature Beef Cows			
Pregnancy Rate to Timed AI			
	Fixed-Time AI	Fixed-Time AI	Split-Time AI
	Conventional	Sex-sorted	Sex-sorted
Estrous	77% °	51% b	42% b
	(81/105)	(53/104)	(47/111)
Non-estrous	37% bc	2% d	36% bc
	(42/113)	(3/113)	(40/110)
Total	56% ×	26% ^z	39% y
	(123/218)	(56/217)	(87/221)
			Thomas et al., 2014a

Results in Beef Heifers with Conventional Semen			
	Pregnancy Rate to Tin Fixed-Time Al	Split-Time Al	
	Conventional	Conventional	
Estrous	52% ° (161/311)	56% ° (183/328)	
Non-estrous	34% ♭ (54/157)	49% ° (66/135)	
Total	46% × (215/468)	54% y (249/463)	
		Thor	ias et al., 20

What happens when we use SexedULTRATM 4M in split-time AI?




	Summary Statistics		
	Conventional	SexedULTRA 4M TM	
RTS	4.2 ± 0.1	4.3 ± 0.1	
Weight (Ibs)	858 ± 5	858 ± 5	
Estrous Response	90%	88% (373/422)	

	Pregnancy Rat Split-Time A	
Location	Conventional	
Location 1	62% (37/60)	61% (37/61)
Location 2	60% (128/212)	52% (108/209)
Location 3	60% (36/60)	58% (33/57)
Location 4	58% (56/97)	42% (40/95)
Total	60%× (257/429)	52% ^y (218/422)
xy p = 0.09		Thomas et al., 2017

Pregnancy Rates to STAI by Bull		
	Conventional	SexedULTRA 4M™
Bull A	62% (151/245)	54% (131/242)
Bull B	58% (106/184)	48% (87/180)
	60%× (257/429)	52% ^y (218/422)

Pregnancy Rates to STAI by Estrous Response			
Estrous Status	Conventional	SexedULTRA 4M TM	
Before 66 h	62% (177/286)	53% (136/259)	
From 66 to 90 h	68% (67/98)	60% (68/114)	
Non-estrous	29% (13/45)	29% (14/49)	
Total	60%× (257/429)	52% ^y (218/422)	
		Thomas et al	

Split-Time Al

nize Timed

J.M. Damar, S.J. Salap¹¹, J.H. Abar J.H.G. Lasta¹¹, S.L. Pasa¹¹, S.S. Brauer M.J. Smith² and S.J. Patherson²

Enternity of Mineral Dealer of Annual Science College of Setternary Medicine College of Applied Secial Science

Mature Beef Cows

Results with STAI are less consistent in mature cows
 Likely most beneficial when estrous response is low prior to FTAI time

More work needed (and underway) in mature beef cows

Split-Time AI: Using Estrus Detection Aids to Optimize Timed Artificial Insemination https://extension2.missouri.edu/mp739

UNIVERSITY OF MISSOURI Extension

Final Thoughts - Looking Forward

Would the ability to use sex-sorted semen get more commercial producers using AI?

Would sex-sorted semen lead to more crossbreeding in the commercial beef industry?

- What does heifer selection look like in the commercial industry with sexsorted semen?
 - Heifer calves primarily retained out of replacement heifers?
 Internal nucleus herd of elite cows that would receive sex-sorted semen?
 - More specialization? E.g. more commercial producers focused only on terminal
 - progeny, sourcing replacement heifers from heifer-focused producers

