Partitioning Variation in Measurements of Beef Carcass Traits Collected Using Ultrasound Schmidt, B., M.D. MacNeil, and M.G. Gonda #### **ULTRASOUND** - Method of measuring carcass traits - Utilized since the 1950's - Quick, relatively inexpensive, non-invasive - Readily incorporated into multiple-trait genetic prediction American Hereford Association #### **CARCASS ULTRASOUND** #### **Measurements** - Intramuscular Fat (IMF) - Longissimus Muscle Area - Subcutaneous Fat - Rump Fat Top: University of Georgia Extension, 2018 Bottom: Carr et al., Ultrasound and Carcass Merit of Youth Market Cattle, University of Florida Extension #### FLOW OF ULTRASOUND DATA #### INTRODUCTION - Abundant attention given to incorporation of data into systems of genetic evaluation - Far less attention given to the underlying assumptions - Technician and interpretive laboratory effects are assumed to be small due to UGC certification - Homogeneity of additive genetic and residual variances #### **HYPOTHESES** - Homogeneity of within technician variances - Technician variance = 0 - Homogeneity of additive genetic and residual variances across imaging laboratories - Within trait, genetic correlations between imaging laboratories = 1 Informally, it does not matter who scans the cattle or which laboratory interprets the images #### **DATA USED** - Collected from 2015 to 2017 - Previously incorporated into national cattle evaluation - Animal ID - Contemporary group - Technician ID (includes technology) - Imaging laboratory - Longissimus muscle area (LMA) - Intramuscular fat (IMF) - Subcutaneous fat depth (SFD) All of the data came from images that had passed the QC of the interpretation laboratory and the breed association #### **DESCRIPTION OF DATA - ANGUS** | | Interpretation | Number of scanning technicians - cor | N _U , | Phenotypic | |----------------------|----------------|--------------------------------------|------------------|------------| | Trait | Laboratory | g_1 N N=549 | $N \approx 65$ | 5953 $3n$ | | LMA, cm ² | 1 | 61 2731 | 349 | 15.2 | | | 2 | 14 - 1641 | 14719 | 16.3 | | | 3 | 18 - 1415 | 16288 | 13.8 | | SFD, mm | 1 | 61 - 2435 | 34952 | 2.77 | | | 2 | 14 – 1641 | 14719 | 2.80 | | | 3 | 18 – 1415 | 16288 | 2.72 | | IMF, % | 1 | 61 - 2435 | 34960 | 1.30 | | | 2 | 14 - 1641 | 14719 | 1.31 | | | 3 | 18 – 1415 | 16288 | 1.51 | #### **DESCRIPTION OF DATA - HEREFORD** | | | Number of scanning technicians - | Phenotypic | |----------------------|---------------------------|----------------------------------|---------------| | Trait | Interpretation Laboratory | cor
gro N N=4 | 572 \ N≈43158 | | LMA, cm ² | 1 | 45 - 221 | 23122 14.3 | | | 2 | 12 - 1496 | 11490 15.5 | | | 3 | 9 – 865 | 8546 13.9 | | SFD, mm | 1 | 45 – 2214 | 21465 2.59 | | | 2 | 13 – 1499 | 10366 2.51 | | | 3 | 9 – 865 | 7914 2.71 | | IMF, % | 1 | 45 – 2209 | 23120 0.98 | | | 2 | 12 - 1498 | 11492 0.76 | | | 3 | 9 – 867 | 8568 1.20 | #### **DESCRIPTION OF DATA - SIMMENTAL** | Trait ¹ | Interpretation
Laboratory | Number of scanning technicians - conto | be | Phenotypic 48298 | |----------------------|------------------------------|--|-------|------------------| | LMA, cm ² | 1 | 53_1703 | 25799 | 14.7 | | | 2 | 11 - 780 | 6018 | 16.2 | | | 3 | 23 - 1675 | 16481 | 15.6 | | SFD, mm | 1 | 53 - 1963 | 25799 | 2.40 | | | 2 | 11 - 780 | 6018 | 2.07 | | | 3 | 23 - 1675 | 16481 | 2.34 | | IMF, % | 1 | 53 – 1963 | 25799 | 1.02 | | | 2 | 11 - 780 | 6018 | 0.81 | | | 3 | 23 - 1675 | 16481 | 1.14 | #### STATISTICAL MODEL $$y_{ijk} = \mu + t_i + c_{ij} + a_{ijk} + e_{ijk}$$ y_{ijk} = Ultrasound carcass phenotype for k^{th} animal $\mu = Overall mean$ $t_i = \text{Effect of } i^{th} \text{ technician}$ $c_{ij} = \text{Effect of } j^{th} \text{ contemp. group scanned by } i^{th} \text{ technician}$ a_{ijk} = Effect of additive genetics by the k^{th} animal e_{ijk} = Residual deviation from model effects Linear model fitted using MTDFREML All effects, except μ , were considered <u>random</u> $$t \sim N(0, \sigma_t^2)$$ $c \sim N(0, \sigma_c^2)$ $a \sim N(0, A\sigma_a^2)$ $e \sim N(0, \sigma_e^2)$ #### MULTIVARIATE MODEL $$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1\mu \\ 1\mu \\ 1\mu \end{bmatrix} + \begin{bmatrix} Z_1t_1 \\ Z_2t_2 \\ Z_3t_3 \end{bmatrix} + \begin{bmatrix} Z_4c_1 \\ Z_5c_2 \\ Z_6c_3 \end{bmatrix} + \begin{bmatrix} Z_7a_1 \\ Z_8a_2 \\ Z_9a_3 \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix}$$ $$Var \begin{bmatrix} t_1 \\ t_2 \\ t_3 \end{bmatrix} = \begin{bmatrix} I\sigma_{t_1}^2 & 0 & 0 \\ 0 & I\sigma_{t_2}^2 & 0 \\ 0 & 0 & I\sigma_{t_3}^2 \end{bmatrix}$$ $$Var\begin{bmatrix} t_1 \\ t_2 \\ t_3 \end{bmatrix} = \begin{bmatrix} I\sigma_{t_1}^2 & 0 & 0 \\ 0 & I\sigma_{t_2}^2 & 0 \\ 0 & 0 & I\sigma_{t_3}^2 \end{bmatrix} \qquad Var\begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} I\sigma_{c_1}^2 & 0 & 0 \\ 0 & I\sigma_{c_2}^2 & 0 \\ 0 & 0 & I\sigma_{c_3}^2 \end{bmatrix}$$ $$Var\begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix} = \begin{bmatrix} I\sigma_{e_1}^2 & 0 & 0 \\ 0 & I\sigma_{e_2}^2 & 0 \\ 0 & 0 & I\sigma_{e_3}^2 \end{bmatrix}$$ $$Var \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} A\sigma_{a_1}^2 & A\sigma_{a_1a_2} & A\sigma_{a_1a_3} \\ A\sigma_{a_2a_1} & A\sigma_{a_2}^2 & A\sigma_{a_2a_3} \\ A\sigma_{a_3a_1} & A\sigma_{a_3a_2} & A\sigma_{a_3}^2 \end{bmatrix}$$ SE of genetic correlations (Bijma and Bastiaansen, 2014) ## **RESULTS** ### Estimates of heritability assuming $\sigma_p^2 = \sigma_a^2 + \sigma_e^2$ | Breed | Lab | LMA | SQF | IMF | |-----------|-----|-----------------|-----------------|-----------------| | Angus | | | | | | | 1 | 0.32 ± 0.02 | 0.37 ± 0.02 | 0.48 ± 0.02 | | | 2 | 0.27 ± 0.03 | 0.33 ± 0.03 | 0.67 ± 0.04 | | | 3 | 0.38 ± 0.03 | 0.43 ± 0.03 | 0.55 ± 0.04 | | Hereford | | | | | | | 1 | 0.35 ± 0.02 | 0.26 ± 0.02 | 0.34 ± 0.02 | | | 2 | 0.35 ± 0.03 | 0.25 ± 0.03 | 0.49 ± 0.03 | | | 3 | 0.34 ± 0.03 | 0.29 ± 0.03 | 0.42 ± 0.03 | | Simmental | | | | | | | 1 | 0.41 ± 0.02 | 0.47 ± 0.02 | 0.55 ± 0.02 | | | 2 | 0.45 ± 0.05 | 0.41 ± 0.05 | 0.52 ± 0.05 | | | 3 | 0.50 ± 0.03 | 0.45 ± 0.03 | 0.54 ± 0.03 | #### Partitioning phenotypic variance of longissimus muscle area | | Variance components and percentages of phenotypic variance | | | | | | | ce | |-----------|--|------------|--------------|------------|------------------|------------|--------------|------------| | | σ_a^2 | 0/0 | σ_t^2 | 0/0 | $\sigma_{c:t}^2$ | 0/0 | σ_e^2 | % | | Angus | | | | | | | | | | Lab 1 | 16.87 | 7 ± 1 | 53.98 | 23 ± 4 | 124.13 | 54 ± 3 | 35.06 | 15 ± 1 | | Lab 2 | 16.65 | 6 ± 1 | 42.58 | 16 ± 6 | 162.95 | 61 ± 4 | 45.10 | 17 ± 1 | | Lab 3 | 17.41 | 9 ± 1 | 13.40 | 7 ± 3 | 129.10 | 68 ± 2 | 29.28 | 15 ± 1 | | Hereford | | | | | | | | | | Lab 1 | 18.85 | 9 ± 1 | 34.24 | 17 ± 4 | 120.75 | 59 ± 3 | 30.50 | 15 ± 1 | | Lab 2 | 20.45 | 8 ± 1 | 15.57 | 6 ± 3 | 169.03 | 70 ± 2 | 35.97 | 15 ± 1 | | Lab 3 | 14.75 | 8 ± 1 | 8.14 | 4 ± 3 | 143.16 | 74 ± 2 | 28.11 | 14 ± 1 | | Simmental | | | | | | | | | | Lab 1 | 27.31 | 13 ± 1 | 57.21 | 26 ± 5 | 93.89 | 43 ± 3 | 38.60 | 18 ± 1 | | Lab 2 | 33.35 | 13 ± 2 | 60.64 | 23 ± 8 | 126.81 | 49 ± 5 | 40.31 | 15 ± 2 | | Lab 3 | 30.57 | 12 ± 1 | 49.98 | 20 ± 6 | 133.84 | 55 ± 4 | 30.67 | 13 ± 1 | #### Partitioning phenotypic variance of subcutaneous fat depth | | Variance components and percentages of phenotypic variance | | | | | | | nce | |-----------|--|------------|--------------|------------|------------------|------------|--------------|------------| | | σ_a^2 | 0/0 | σ_t^2 | 0/0 | $\sigma_{c:t}^2$ | 0/0 | σ_e^2 | 0/0 | | Angus | | | | | | | | | | Lab 1 | 0.98 | 13 ± 1 | 1.48 | 19 ± 3 | 3.58 | 47 ± 2 | 1.64 | 21 ± 1 | | Lab 2 | 0.87 | 11 ± 1 | 0.92 | 12 ± 5 | 4.26 | 54 ± 3 | 1.79 | 23 ± 2 | | Lab 3 | 1.08 | 15 ± 2 | 1.44 | 19 ± 6 | 3.46 | 47 ± 4 | 1.42 | 19 ± 2 | | Hereford | | | | | | | | | | Lab 1 | 0.86 | 13 ± 1 | 0.64 | 10 ± 2 | 3.18 | 47 ± 2 | 2.04 | 30 ± 1 | | Lab 2 | 0.80 | 13 ± 2 | 0.33 | 5 ± 3 | 3.27 | 52 ± 2 | 1.93 | 31 ± 2 | | Lab 3 | 0.74 | 10 ± 2 | 1.68 | 23 ± 9 | 3.16 | 43 ± 5 | 1.75 | 24 ± 3 | | Simmental | | | | | | | | | | Lab 1 | 1.43 | 25 ± 2 | 1.15 | 20 ± 4 | 1.58 | 28 ± 2 | 1.59 | 28 ± 2 | | Lab 2 | 0.92 | 22 ± 3 | 0.70 | 16 ± 6 | 1.35 | 31 ± 3 | 1.32 | 31 ± 3 | | Lab 3 | 0.93 | 17 ± 2 | 1.24 | 23 ± 6 | 2.17 | 39 ± 3 | 1.15 | 21 ± 2 | #### Partitioning phenotypic variance of percent intramuscular fat | | Va | Variance components and percentages of phenotypic variance | | | | | | | |-----------|--------------|--|--------------|------------|------------------|------------|--------------|------------| | | σ_a^2 | 0/0 | σ_t^2 | 0/0 | $\sigma_{c:t}^2$ | 0/0 | σ_e^2 | 0/0 | | Angus | | | | | | | | | | Lab 1 | 0.34 | 20 ± 2 | 0.43 | 25 ± 4 | 0.56 | 33 ± 2 | 0.37 | 22 ± 1 | | Lab 2 | 0.52 | 30 ± 3 | 0.21 | 12 ± 5 | 0.73 | 43 ± 3 | 0.26 | 15 ± 2 | | Lab 3 | 0.51 | 22 ± 2 | 0.33 | 15 ± 5 | 1.03 | 45 ± 3 | 0.41 | 18 ± 2 | | Hereford | | | | | | | | | | Lab 1 | 0.16 | 16 ± 1 | 0.21 | 22 ± 4 | 0.37 | 34 ± 2 | 0.27 | 28 ± 2 | | Lab 2 | 0.15 | 26 ± 2 | 0.07 | 12 ± 5 | 0.23 | 39 ± 3 | 0.13 | 23 ± 2 | | Lab 3 | 0.24 | 17 ± 2 | 0.20 | 14 ± 6 | 0.69 | 48 ± 4 | 0.32 | 22 ± 2 | | Simmental | | | | | | | | | | Lab 1 | 0.28 | 27 ± 2 | 0.27 | 27 ± 4 | 0.26 | 25 ± 2 | 0.23 | 22 ± 2 | | Lab 2 | 0.17 | 26 ± 3 | 0.10 | 16 ± 6 | 0.22 | 34 ± 3 | 0.16 | 25 ± 3 | | Lab 3 | 0.31 | 24 ± 2 | 0.18 | 14 ± 4 | 0.55 | 42 ± 2 | 0.26 | 20 ± 2 | #### LONGISSIMUS MUSCLE AREA Estimates of genetic correlation and rank correlation of sires evaluated by pairs of interpretation laboratories (Number of sires) | | | Lab 1 | Lab 2 | Lab 3 | |-----------|-------|------------------|------------------|------------| | Angus | | | | | | | Lab 1 | | 0.99 (417) | 0.99 (501) | | | Lab 2 | 0.94 ± 0.04 | | 0.99 (327) | | | Lab 3 | 0.96 ± 0.04 | 0.94 ± 0.04 | | | Hereford | | | | | | | Lab 1 | | 0.95 (245) | 1.00 (199) | | | Lab 2 | 0.92 ± 0.06 | | 0.96 (251) | | | Lab 3 | 0.98 ± 0.06 | 0.88 ± 0.06 | | | Simmental | | | | | | | Lab 1 | | 0.88 (341) | 0.94 (510) | | | Lab 2 | $0.78 \pm 0.06*$ | | 0.93 (320) | | | Lab 3 | 0.85 ± 0.05 | $0.80 \pm 0.06*$ | | #### SUBCUTANEOUS FAT DEPTH # Estimates of genetic correlation and rank correlation of sires evaluated by pairs of interpretation laboratories (Number of sires) | | | Lab 1 | Lab 2 | Lab 3 | |-----------|-------|-------------------|-------------------|------------| | Angus | | | | | | | Lab 1 | | 0.99 (418) | 0.98 (501) | | | Lab 2 | 0.93 ± 0.04 | | 0.98 (327) | | | Lab 3 | 0.92 ± 0.04* | 0.92 ± 0.04* | | | Hereford | | | | | | | Lab 1 | | 0.82 (232) | 0.77 (185) | | | Lab 2 | 0.70 ± 0.11 * | | 0.49 (238) | | | Lab 3 | 0.58 ± 0.14 * | 0.26 ± 0.14* | | | Simmental | | | | | | | Lab 1 | | 0.95 (341) | 0.99 (510) | | | Lab 2 | $0.82 \pm 0.05 *$ | | 0.93 (341) | | | Lab 3 | 0.94 ± 0.04 | $0.79 \pm 0.06 *$ | | #### PERCENT INTRAMUSCULAR FAT Estimates of genetic correlation and rank correlation of sires evaluated by pairs of interpretation laboratories (Number of sires) | | | Lab 1 | Lab 2 | Lab 3 | |-----------|------|------------------|-------------------|------------| | Angus | | | | | | La | ab 1 | | 0.99 (418) | 0.99 (501) | | La | ab 2 | 0.95 ± 0.03 | | 0.97 (327) | | La | ab 3 | $0.94 \pm 0.03*$ | $0.89 \pm 0.03*$ | | | Hereford | | | | | | La | ab 1 | | 0.97 (245) | 0.97 (200) | | La | ab 2 | $0.89 \pm 0.06*$ | | 0.93 (251) | | La | ab 3 | $0.87 \pm 0.07*$ | $0.80 \pm 0.06 *$ | | | Simmental | | | | | | La | ab 1 | | 0.94 (341) | 0.97 (320) | | La | ab 2 | $0.79 \pm 0.05*$ | | 0.96 (510) | | La | ab 3 | $0.88 \pm 0.04*$ | $0.87 \pm 0.05*$ | | #### **SUMMARY #1** - Considerable variation among technicians; for all traits it is as large or larger than additive genetic merit - Within technician estimates of variance are significantly heterogeneous (Bartlett's test) for all traits #### **SUMMARY #2** - Estimates of additive genetic variance are generally homogenous among the interpretation laboratories; but there may be exceptions - Likewise, with exceptions the estimates of residual variance are generally homogenous among interpretation laboratories - Genetic correlations among interpretation laboratories suggest that results reported from different laboratories may be slightly different "traits"; particularly for subcutaneous fat depth and IMF #### RECOMMENDATIONS - UGC should revisit the certification standards for both field technicians and image interpretation laboratories - There may be merit in standardized methods of image interpretation that can be deployed across laboratories - Breed associations should dive deeper into the data they receive, relative to carcass traits measured with ultrasound, to insure that they are meeting the BLUP assumptions of homogenous variance #### **CLOSING THOUGHTS** - There is work to do to make ultrasound the most valuable tool it can be for genetic improvement of beef cattle - Data currently being collected using ultrasound technology is of unquestioned value in prediction of breeding values for carcass traits - Rank correlations for sires having progeny with images interpreted in more than one laboratory indicate generally excellent agreement in their evaluations #### **ACKNOWLEDGEMENTS** **American Simmental Association** # Thank You