Partitioning Variation in Measurements of Beef Carcass Traits Collected Using Ultrasound

Schmidt, B., M.D. MacNeil, and M.G. Gonda

ULTRASOUND

- Method of measuring carcass traits
- Utilized since the 1950's
- Quick, relatively inexpensive, non-invasive
- Readily incorporated into multiple-trait genetic prediction

American Hereford Association

CARCASS ULTRASOUND

Measurements

- Intramuscular Fat (IMF)
- Longissimus Muscle Area
- Subcutaneous Fat
- Rump Fat

Top: University of Georgia Extension, 2018 Bottom: Carr et al., Ultrasound and Carcass Merit of Youth Market Cattle, University of Florida Extension

FLOW OF ULTRASOUND DATA

INTRODUCTION

- Abundant attention given to incorporation of data into systems of genetic evaluation
- Far less attention given to the underlying assumptions
- Technician and interpretive laboratory effects are assumed to be small due to UGC certification
- Homogeneity of additive genetic and residual variances

HYPOTHESES

- Homogeneity of within technician variances
- Technician variance = 0
- Homogeneity of additive genetic and residual variances across imaging laboratories
- Within trait, genetic correlations between imaging laboratories = 1

Informally, it does not matter who scans the cattle or which laboratory interprets the images

DATA USED

- Collected from 2015 to 2017
- Previously incorporated into national cattle evaluation
 - Animal ID
 - Contemporary group
 - Technician ID (includes technology)
 - Imaging laboratory

- Longissimus muscle area (LMA)
- Intramuscular fat (IMF)
- Subcutaneous fat depth (SFD)

All of the data came from images that had passed the QC of the interpretation laboratory and the breed association

DESCRIPTION OF DATA - ANGUS

	Interpretation	Number of scanning technicians - cor	N _U ,	Phenotypic
Trait	Laboratory	g_1 N N=549	$N \approx 65$	5953 $3n$
LMA, cm ²	1	61 2731	349	15.2
	2	14 - 1641	14719	16.3
	3	18 - 1415	16288	13.8
SFD, mm	1	61 - 2435	34952	2.77
	2	14 – 1641	14719	2.80
	3	18 – 1415	16288	2.72
IMF, %	1	61 - 2435	34960	1.30
	2	14 - 1641	14719	1.31
	3	18 – 1415	16288	1.51

DESCRIPTION OF DATA - HEREFORD

		Number of scanning technicians -	Phenotypic
Trait	Interpretation Laboratory	cor gro N N=4	572 \ N≈43158
LMA, cm ²	1	45 - 221	23122 14.3
	2	12 - 1496	11490 15.5
	3	9 – 865	8546 13.9
SFD, mm	1	45 – 2214	21465 2.59
	2	13 – 1499	10366 2.51
	3	9 – 865	7914 2.71
IMF, %	1	45 – 2209	23120 0.98
	2	12 - 1498	11492 0.76
	3	9 – 867	8568 1.20

DESCRIPTION OF DATA - SIMMENTAL

Trait ¹	Interpretation Laboratory	Number of scanning technicians - conto	be	Phenotypic 48298
LMA, cm ²	1	53_1703	25799	14.7
	2	11 - 780	6018	16.2
	3	23 - 1675	16481	15.6
SFD, mm	1	53 - 1963	25799	2.40
	2	11 - 780	6018	2.07
	3	23 - 1675	16481	2.34
IMF, %	1	53 – 1963	25799	1.02
	2	11 - 780	6018	0.81
	3	23 - 1675	16481	1.14

STATISTICAL MODEL

$$y_{ijk} = \mu + t_i + c_{ij} + a_{ijk} + e_{ijk}$$

 y_{ijk} = Ultrasound carcass phenotype for k^{th} animal

 $\mu = Overall mean$

 $t_i = \text{Effect of } i^{th} \text{ technician}$

 $c_{ij} = \text{Effect of } j^{th} \text{ contemp. group scanned by } i^{th} \text{ technician}$

 a_{ijk} = Effect of additive genetics by the k^{th} animal

 e_{ijk} = Residual deviation from model effects

Linear model fitted using MTDFREML

All effects, except μ , were considered <u>random</u>

$$t \sim N(0, \sigma_t^2)$$
 $c \sim N(0, \sigma_c^2)$ $a \sim N(0, A\sigma_a^2)$ $e \sim N(0, \sigma_e^2)$

MULTIVARIATE MODEL

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1\mu \\ 1\mu \\ 1\mu \end{bmatrix} + \begin{bmatrix} Z_1t_1 \\ Z_2t_2 \\ Z_3t_3 \end{bmatrix} + \begin{bmatrix} Z_4c_1 \\ Z_5c_2 \\ Z_6c_3 \end{bmatrix} + \begin{bmatrix} Z_7a_1 \\ Z_8a_2 \\ Z_9a_3 \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix}$$

$$Var \begin{bmatrix} t_1 \\ t_2 \\ t_3 \end{bmatrix} = \begin{bmatrix} I\sigma_{t_1}^2 & 0 & 0 \\ 0 & I\sigma_{t_2}^2 & 0 \\ 0 & 0 & I\sigma_{t_3}^2 \end{bmatrix}$$

$$Var\begin{bmatrix} t_1 \\ t_2 \\ t_3 \end{bmatrix} = \begin{bmatrix} I\sigma_{t_1}^2 & 0 & 0 \\ 0 & I\sigma_{t_2}^2 & 0 \\ 0 & 0 & I\sigma_{t_3}^2 \end{bmatrix} \qquad Var\begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} I\sigma_{c_1}^2 & 0 & 0 \\ 0 & I\sigma_{c_2}^2 & 0 \\ 0 & 0 & I\sigma_{c_3}^2 \end{bmatrix}$$

$$Var\begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix} = \begin{bmatrix} I\sigma_{e_1}^2 & 0 & 0 \\ 0 & I\sigma_{e_2}^2 & 0 \\ 0 & 0 & I\sigma_{e_3}^2 \end{bmatrix}$$

$$Var \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} A\sigma_{a_1}^2 & A\sigma_{a_1a_2} & A\sigma_{a_1a_3} \\ A\sigma_{a_2a_1} & A\sigma_{a_2}^2 & A\sigma_{a_2a_3} \\ A\sigma_{a_3a_1} & A\sigma_{a_3a_2} & A\sigma_{a_3}^2 \end{bmatrix}$$

SE of genetic correlations (Bijma and Bastiaansen, 2014)

RESULTS

Estimates of heritability assuming $\sigma_p^2 = \sigma_a^2 + \sigma_e^2$

Breed	Lab	LMA	SQF	IMF
Angus				
	1	0.32 ± 0.02	0.37 ± 0.02	0.48 ± 0.02
	2	0.27 ± 0.03	0.33 ± 0.03	0.67 ± 0.04
	3	0.38 ± 0.03	0.43 ± 0.03	0.55 ± 0.04
Hereford				
	1	0.35 ± 0.02	0.26 ± 0.02	0.34 ± 0.02
	2	0.35 ± 0.03	0.25 ± 0.03	0.49 ± 0.03
	3	0.34 ± 0.03	0.29 ± 0.03	0.42 ± 0.03
Simmental				
	1	0.41 ± 0.02	0.47 ± 0.02	0.55 ± 0.02
	2	0.45 ± 0.05	0.41 ± 0.05	0.52 ± 0.05
	3	0.50 ± 0.03	0.45 ± 0.03	0.54 ± 0.03

Partitioning phenotypic variance of longissimus muscle area

	Variance components and percentages of phenotypic variance							ce
	σ_a^2	0/0	σ_t^2	0/0	$\sigma_{c:t}^2$	0/0	σ_e^2	%
Angus								
Lab 1	16.87	7 ± 1	53.98	23 ± 4	124.13	54 ± 3	35.06	15 ± 1
Lab 2	16.65	6 ± 1	42.58	16 ± 6	162.95	61 ± 4	45.10	17 ± 1
Lab 3	17.41	9 ± 1	13.40	7 ± 3	129.10	68 ± 2	29.28	15 ± 1
Hereford								
Lab 1	18.85	9 ± 1	34.24	17 ± 4	120.75	59 ± 3	30.50	15 ± 1
Lab 2	20.45	8 ± 1	15.57	6 ± 3	169.03	70 ± 2	35.97	15 ± 1
Lab 3	14.75	8 ± 1	8.14	4 ± 3	143.16	74 ± 2	28.11	14 ± 1
Simmental								
Lab 1	27.31	13 ± 1	57.21	26 ± 5	93.89	43 ± 3	38.60	18 ± 1
Lab 2	33.35	13 ± 2	60.64	23 ± 8	126.81	49 ± 5	40.31	15 ± 2
Lab 3	30.57	12 ± 1	49.98	20 ± 6	133.84	55 ± 4	30.67	13 ± 1

Partitioning phenotypic variance of subcutaneous fat depth

	Variance components and percentages of phenotypic variance							nce
	σ_a^2	0/0	σ_t^2	0/0	$\sigma_{c:t}^2$	0/0	σ_e^2	0/0
Angus								
Lab 1	0.98	13 ± 1	1.48	19 ± 3	3.58	47 ± 2	1.64	21 ± 1
Lab 2	0.87	11 ± 1	0.92	12 ± 5	4.26	54 ± 3	1.79	23 ± 2
Lab 3	1.08	15 ± 2	1.44	19 ± 6	3.46	47 ± 4	1.42	19 ± 2
Hereford								
Lab 1	0.86	13 ± 1	0.64	10 ± 2	3.18	47 ± 2	2.04	30 ± 1
Lab 2	0.80	13 ± 2	0.33	5 ± 3	3.27	52 ± 2	1.93	31 ± 2
Lab 3	0.74	10 ± 2	1.68	23 ± 9	3.16	43 ± 5	1.75	24 ± 3
Simmental								
Lab 1	1.43	25 ± 2	1.15	20 ± 4	1.58	28 ± 2	1.59	28 ± 2
Lab 2	0.92	22 ± 3	0.70	16 ± 6	1.35	31 ± 3	1.32	31 ± 3
Lab 3	0.93	17 ± 2	1.24	23 ± 6	2.17	39 ± 3	1.15	21 ± 2

Partitioning phenotypic variance of percent intramuscular fat

	Va	Variance components and percentages of phenotypic variance						
	σ_a^2	0/0	σ_t^2	0/0	$\sigma_{c:t}^2$	0/0	σ_e^2	0/0
Angus								
Lab 1	0.34	20 ± 2	0.43	25 ± 4	0.56	33 ± 2	0.37	22 ± 1
Lab 2	0.52	30 ± 3	0.21	12 ± 5	0.73	43 ± 3	0.26	15 ± 2
Lab 3	0.51	22 ± 2	0.33	15 ± 5	1.03	45 ± 3	0.41	18 ± 2
Hereford								
Lab 1	0.16	16 ± 1	0.21	22 ± 4	0.37	34 ± 2	0.27	28 ± 2
Lab 2	0.15	26 ± 2	0.07	12 ± 5	0.23	39 ± 3	0.13	23 ± 2
Lab 3	0.24	17 ± 2	0.20	14 ± 6	0.69	48 ± 4	0.32	22 ± 2
Simmental								
Lab 1	0.28	27 ± 2	0.27	27 ± 4	0.26	25 ± 2	0.23	22 ± 2
Lab 2	0.17	26 ± 3	0.10	16 ± 6	0.22	34 ± 3	0.16	25 ± 3
Lab 3	0.31	24 ± 2	0.18	14 ± 4	0.55	42 ± 2	0.26	20 ± 2

LONGISSIMUS MUSCLE AREA

Estimates of genetic correlation and rank correlation of sires evaluated by pairs of interpretation laboratories (Number of sires)

		Lab 1	Lab 2	Lab 3
Angus				
	Lab 1		0.99 (417)	0.99 (501)
	Lab 2	0.94 ± 0.04		0.99 (327)
	Lab 3	0.96 ± 0.04	0.94 ± 0.04	
Hereford				
	Lab 1		0.95 (245)	1.00 (199)
	Lab 2	0.92 ± 0.06		0.96 (251)
	Lab 3	0.98 ± 0.06	0.88 ± 0.06	
Simmental				
	Lab 1		0.88 (341)	0.94 (510)
	Lab 2	$0.78 \pm 0.06*$		0.93 (320)
	Lab 3	0.85 ± 0.05	$0.80 \pm 0.06*$	

SUBCUTANEOUS FAT DEPTH

Estimates of genetic correlation and rank correlation of sires evaluated by pairs of interpretation laboratories (Number of sires)

		Lab 1	Lab 2	Lab 3
Angus				
	Lab 1		0.99 (418)	0.98 (501)
	Lab 2	0.93 ± 0.04		0.98 (327)
	Lab 3	0.92 ± 0.04*	0.92 ± 0.04*	
Hereford				
	Lab 1		0.82 (232)	0.77 (185)
	Lab 2	0.70 ± 0.11 *		0.49 (238)
	Lab 3	0.58 ± 0.14 *	0.26 ± 0.14*	
Simmental				
	Lab 1		0.95 (341)	0.99 (510)
	Lab 2	$0.82 \pm 0.05 *$		0.93 (341)
	Lab 3	0.94 ± 0.04	$0.79 \pm 0.06 *$	

PERCENT INTRAMUSCULAR FAT

Estimates of genetic correlation and rank correlation of sires evaluated by pairs of interpretation laboratories (Number of sires)

		Lab 1	Lab 2	Lab 3
Angus				
La	ab 1		0.99 (418)	0.99 (501)
La	ab 2	0.95 ± 0.03		0.97 (327)
La	ab 3	$0.94 \pm 0.03*$	$0.89 \pm 0.03*$	
Hereford				
La	ab 1		0.97 (245)	0.97 (200)
La	ab 2	$0.89 \pm 0.06*$		0.93 (251)
La	ab 3	$0.87 \pm 0.07*$	$0.80 \pm 0.06 *$	
Simmental				
La	ab 1		0.94 (341)	0.97 (320)
La	ab 2	$0.79 \pm 0.05*$		0.96 (510)
La	ab 3	$0.88 \pm 0.04*$	$0.87 \pm 0.05*$	

SUMMARY #1

- Considerable variation among technicians; for all traits it is as large or larger than additive genetic merit
- Within technician estimates of variance are significantly heterogeneous (Bartlett's test) for all traits

SUMMARY #2

- Estimates of additive genetic variance are generally homogenous among the interpretation laboratories; but there may be exceptions
- Likewise, with exceptions the estimates of residual variance are generally homogenous among interpretation laboratories
- Genetic correlations among interpretation laboratories suggest that results reported from different laboratories may be slightly different "traits"; particularly for subcutaneous fat depth and IMF

RECOMMENDATIONS

- UGC should revisit the certification standards for both field technicians and image interpretation laboratories
- There may be merit in standardized methods of image interpretation that can be deployed across laboratories
- Breed associations should dive deeper into the data they receive, relative to carcass traits measured with ultrasound, to insure that they are meeting the BLUP assumptions of homogenous variance

CLOSING THOUGHTS

- There is work to do to make ultrasound the most valuable tool it can be for genetic improvement of beef cattle
- Data currently being collected using ultrasound technology is of unquestioned value in prediction of breeding values for carcass traits
- Rank correlations for sires having progeny with images interpreted in more than one laboratory indicate generally excellent agreement in their evaluations

ACKNOWLEDGEMENTS

American Simmental Association

Thank You

