Cow Milk Production vs Calf Size

Travis Mulliniks, PhD University of Nebraska-Lincoln West Central Research and Extension Center 2020 Beef Improvement Federation Meeting

Milk Production vs Calf Size

- Systems approach rather than a calf output approach
 - Calf Output
 - Weaning
 - Postweaning
 - Cow Pregnancy Rate
 - Longevity of the cowherd
 - Production Costs
 - Carrying capacity
 - Flexibility in the System
 - Production Risks
 - Drought/high rainfall, etc

Beef Cattle Industry Ideology

- Measuring outputs is more meaningful than inputs
 - Weaning weight over production costs
- Modify environments in order to "get heavier calves, greater percent calf crop and more total pounds"
 - Little regard to production costs
 - Rather than increasing net return

Reproduction Drives Production Efficiency

- Reproduction is the main factor limiting production efficiency in the beef cow herd (Dickerson, 1970)
 - Greatest production loss in the cow/calf segment (Bellows and Short, 1994)
- Reproduction is 5x more economically important than traits like:
 - Milk production
 - Calf growth (Trenkle and Willham, 1977)

Profitability in Cow/Calf Production

- Two largest factors for profitability from financial and production data from Illinois and lowa
 - Feed costs > 50% of variation in profit
 - Depreciation and operation costs 17% of variation
- Calf BW

– 5% influence in profitability

Nebraska & South Dakota Beef Cow-Calf Per Cow; 2015

	Тор 35%	Herd Ave	Bottom 20%	Dif	% Dif
Cost of production/cwt	132.96	137.71	155.53	-\$22.57	16%
Number of cows	122.2	158.6	137.8	-15.6	-11%
Cows per FTE	656.3	617.7	325	331.3	102%
Culling percentage	15.8	17.1	28.6		-12.8%
Calving percentage	95.2	94.4	95.6		4%
Weaning percentage	91	90.7	94.1		-3.1%
Calves sold per cow	.89	.90	.93	04	4%
Calf death loss percent	2.9	3.2	4.5		-1.6%
Avg. sale wt. of calves	535	560	598	-63 lbs	-11%
Ave weaning weight	485	520	535	-50 lbs	-9%
Lbs. weaned/exposed female	441	472	503	62 lbs	-12%

Benchmark Report, 40 farms FINBIN© University of Minnesota

Matching Genetic Potential with Forage Resources

Genetic Selection for Milk

GUDMUNDSEN SANDHILLS LABORATORY

Kuehn and Thallman, 2016

Relationship of sire milk EPD and 24-h milk yield

Average weaning weight in commercial cow/calf operations

-NM, TX, OK -ND

CHAPS: Average 205-d weaning weight in commercial cow/calf operations

Milk and Calf Gain

- Is there a limit of milk production that YOUR forage can support?
- Is there a limit calf milk intake/milk production that will support additional gain?

Meta-analysis of 20 published papers on Milk and Calf Weaning Weight

When does milk influence calf growth?

205 days of age

60 days of age

Edwards et al. 2017

Milk Production and Early Calf Growth

- Energy intake ~ 86% from milk at 45 d of age
- Forage intake greater in progeny of low milking dams

Peak Milk Production, lb/d

Milk Production and Post-Peak Lactation Growth

- Energy intake from milk ~ 19% by weaning
- Calf growth after peak lactation
 - Similar across milk groups
- Forage intake greater in progeny of low milking dams
 - Offset nutrient intake with forage intake
 - Dependent on forage quality

Milk influence in different

environments

Humid Environment -

Tennessee

Semi-arid Environment –

Nebraska

Impact of Milk on Calf Weaning Weight

Milk drives calf growth up to peak lactation
Highly variable response post peak lactation

- Forage quality after peak lactation impacts growth
 - Forage intake can offset lack of milk
 - High vs Low forage quality

Selection for Milk Impacts More than Calf Growth

What about the entire production system??

Increased Milk Can Decrease Pregnancy Rates

- 237 Spring-calving Angus cows
- Fed high-quality forage diet

Milk Production and Resumption of Estrus in Young Cows In NM

Mulliniks et al. 2020

Net energy balance during breeding by calving season in Nebraska Sandhills

May-calving

Mulliniks and Adams, 2019

Forage Intake Needed to Meet Protein Requirements for Milk

Comparison of Genetic x Environment on Productivity

Tennessee

- High growth potential
- High milk potential
- High forage growth and feed input

New Mexico

- Moderate growth
- Low milk potential
- Limited forage availability
- Low feed input

Milk Production and Calf Weaning Weight in Two Different Environments

24-hr Milk Production, lb Calf Weaning Weight, lb

TN: 25 lb Calf Weaned/1 lb of Milk NM: 43 lb Calf Weaned/1 lb of Milk

Pregnancy Rate and Pounds of Calf Weaned Per Cow Exposed

Pregnancy Rate, %

Pounds of Calf Weaned Per Cow Exposed

NM vs TN Evaluation

- Take into account cow retention
 - 61% retention rate at 5 yr of age in NM
 - 44% retention rate at 5 yr of age in TN

- Cost of production
 - Lower cost of production in NM
 - ~\$300 400 decrease in cost of production

Effect of Milk on Feedlot Performance

Item	Low	Moderate	High	SEM
Days	205	205	205	
Initial BW, lb	539	548	570	29
Gain, lb/d	2.90	2.82	2.86	0.13
DMI, lb/d	18.41	18.90	19.00	0.59
Gain/feed	0.157	0.149	0.150	0.07

Lewis et al. 1990

Increased Energy Requirements = Decreased Feedlot Efficiency!

Conclusion

- We have a tendency to overdue things
 - Larger milking cows increase production risks, increase costs
- Matching cows to the environment
 - Balancing act

Increasing Milk Increases Risk

• Minimal Increase in Calf Growth

- Potential for no increase in calf growth

- Feed resources may limit expression of milk
- Production System Impact
 - May decrease reproductive efficiency
 - May decrease post-weaning calf efficiency
 - Production costs increase

Questions

