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The Carcass Merit Project (CMP) was initiated in 1998 stemming from concern over the 
frequency of unsatisfactory eating experiences due to inadequate tenderness. The 
project was funded by America’s beef producers through the $1 per head checkoff, by 
the participating breed associations, and by MMI Genomics, Inc. 
 
The primary goal of the project was to provide the tools and mechanisms to genetically 
identify superior animals in the U.S. beef cattle population that will produce progeny with 
the greatest potential for meeting the demands of consumers. The participating breed 
associations generated individual databases that allowed the development of EPDs for 
important carcass traits, including Warner-Bratzler shear force (WBSF) and sensory 
attributes. In addition, genetic markers for economically important carcass and 
consumer satisfaction traits were validated in the general U.S. beef cattle population. 
The markers evaluated resulted from previous checkoff-funded research at Texas A&M 
University (TAMU). 
 
At completion, carcass data have been collected on over 8,200 progeny of project sires. 
DNA marker analysis was completed on progeny of 70 sires representing 13 breeds. 
  
Four universities, the USDA Agricultural Research Service, and 13 breed associations 
cooperated with the National Cattlemen’s Beef Association (NCBA) on the Carcass 
Merit Project.  Shear force and sensory panel data was collected at Kansas State 
University. MMI Genomics performed the primary DNA laboratory work for the study. Dr. 
Dan Moser of Kansas State University acted as the facilitator and liaison to the breed 
associations.   
 
Texas A&M University conducted the quality control testing for the project and per-
formed the DNA marker statistical analysis on an individual sire basis. An independent 
validation of the TAMU analysis, as well as a breed-wide and project-wide analysis of 
marker data was performed by the U. S. Meat Animal Research Center. A secure data-
base containing all the relevant data for the project has been maintained by Cornell 
University. Colorado State University economists have estimated economic returns to 
producers using carcass EPDs for cattle selection. 

                                            
1 Agricultural Research Service, U.S. Department of Agriculture, Clay Center, NE 68933 
2 Mention of trade names or commercial products in this article is solely for the purpose 
of providing specific information and does not imply recommendation or endorsement 
by the U.S. Department of Agriculture. 
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Project Objectives 

• Generate data from which genetic evaluations for tenderness and other sensory 
traits could be computed. 

• Develop methodology and procedures for collection of information necessary for 
further development of EPDs for carcass traits. 

• Validate DNA markers discovered in previous checkoff-funded research at TAMU for 
use in industry-wide marker-assisted selection programs for improvement of carcass 
traits. 

• Measure costs and returns of implementing EPDs for carcass traits for the 
alternative genetic selection programs and combinations of management x genetic 
improvement of carcass traits. 

• Breed comparison was strictly precluded from being an objective. 
 

Project Design 
The logistics for the project are described in Figure 1. All US beef breed associations 
were invited to participate. The following breeds participated in the project: 
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Figure 1. Carcass Merit Project Flowchart 

• Charolais 
• Gelbvieh 
• Hereford 
• Limousin 
• Maine-Anjou 
• Red Angus 
• Salers 
• Shorthorn 
• Simmental 
• Simbrah 
• South Devon 
 
 
Commercial cows were inseminated to several of the most widely used AI sires of each 
of the breed associations cooperating and supporting the research project.  It was the 
responsibility of each breed association to select the sires and provide the leadership 
and all costs associated with nominating cattle for the study. The associations were also 
responsible for the semen, AI, collection of feedlot performance data, blood collection, 
shipping of blood samples, and the development of EPDs for their respective breeds.  
Breed identity was coded to prevent breed associations and/or breeders from 
comparing breeds. 
 
Up to ten bulls from each breed were designated as “DNA sires.” Fifty progeny of each 
of these sires were used for DNA analysis and shear force measurements. Five of the 
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ten DNA sires for each breed were designated “sensory sires.” Sensory panel data were 
collected on all fifty progeny of each of the sensory sires. Additional bulls were allocated 
by breed based on registration numbers for EPD analysis. Twenty-five progeny of each 
of these “EPD sires” were allotted for shear force measures.    
 
Progeny were fed at several locations and ultimately harvested at several cooperating 
processors. Age at which cattle were started on feed and other appropriate information 
were collected by each participating breed association.  Breed associations were 
encouraged to minimize the number of contemporary groups and to harvest each group 
in a single day, whenever possible.  
 
Carcass data, including carcass weight, ribeye area, fat thickness, marbling score and 
percentage of internal fat, were collected. In addition, researchers obtained one steak 
from each progeny of every sire and two steaks from each progeny of the DNA sires 
designated for the sensory panel component of the project. Steaks were shipped to 
Kansas State University to collect WBSF values and for trained sensory panel 
evaluation. Steaks measured for shear force were cooked fresh at 14 days post-
mortem, whereas sensory panel steaks were frozen and later thawed for trained 
sensory panel evaluations. Overall tenderness (OT) is a linear function of two sensory 
panel traits, myofibrillar tenderness (MT) and connective tissue tenderness (CT). Higher 
scores for all sensory traits, which also include flavor and juiciness, are more desirable. 
Because WBSF is the force required to shear through cooked meat, higher values are 
less desirable. 
 
The project was not designed to provide comparisons among breeds and consequently, 
no valid breed comparisons can be drawn. A breed’s average relative to the overall 
project average is due to management as much as genetics. Furthermore, some breed 
associations bred their sires to cows of the same breed, while other breed associations 
used cows of breeds known to be above average for tenderness. There is not a 
reasonable statistical approach to adjust for these differences in genetics of the cows. 
 

Phenotypic Results 
Analysis of the phenotypic data showed significant variation among all breeds for shear 
force.  Ranges of average shear force values for sires within breeds were from 1.90 lb. 
to 6.62 lb (Dikeman et al., 2003), indicating that every breed has significant variation in 
tenderness, and opportunity to improve this trait.   
 
Greater than 8,200 progeny of over 300 sires representing 14 breeds were harvested 
for collection of carcass and meat quality data. The analysis excluded data from 883 
progeny because of incorrect animal or carcass identification. There were 7,319 
progeny used in carcass and WBSF analyses and 2,422 progeny with sensory panel 
data. 
 
Carcass traits of the project cattle were representative of the beef industry with average 
hot carcass weight of 771 lb, fat thickness of 0.48 in, ribeye area of 13.2 in2, yield grade 
of 2.8, and marbling score of Small20. 
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Although the cattle were young, mostly from AI sires, and managed optimally, 26% of 
the steaks had WBSF values > 11.0 lb (considered tough) and 19.4% had sensory 
panel tenderness scores of < 5.0 (5 = slightly tender; 4 = slightly tough). 
  

Heritabilities and Genetic Correlations 
Data from 2,615 progeny of 70 sires were used to estimate heritabilities and genetic and 
phenotypic correlations (Table 1) using an animal model with relationships among sires 
(dams were assumed unrelated) in a series of 4-trait analyses. The identity and pater-
nity of these carcasses were verified by DNA marker data. The genetic correlations 
between WBSF and the sensory panel tenderness scores are highly negative (favor-
able) and therefore WBSF is a useful measure of tenderness. The genetic correlations 
between marbling and sensory tenderness are much closer to zero. Furthermore, 
WBSF is a heritable trait, and hence, it will respond to selection. Therefore, EPDs for 
WBSF can be computed for all sires in the CMP and can be generated on an ongoing 
basis if new phenotypic information is generated. Four breeds (Simmental, Simbrah, 
Shorthorn, and Hereford) have published shear force EPDs mostly based on data col-
lected in this project. The CMP data has augmented the carcass EPDs of many breeds 
and has allowed one breed, (Maine-Anjou) to publish its first carcass EPDs of any kind. 
 
Table 1. Heritabilities and genetic and phenotypic correlations. 
Trait Name Trt WBSF MT CT CL FL JC MB FT KPH HCW REA
Shear Force WBSF 0.43 -0.99 -0.79 0.41 -0.65 -0.65 -0.56 -0.28 0.47 0.02 0.23
Myofib Tnd MT -0.68 0.29 0.92 -0.26 0.79 0.74 0.38 0.14 -0.86 0.20 -0.51
Cn Tiss Tnd CT -0.63 0.82 0.25 -0.24 0.74 0.62 0.19 0.22 -0.82 0.38 -0.5
Cooking Loss CL 0.27 -0.06 -0.04 0.14 -0.16 -0.21 -0.72 -0.16 -0.02 0.16 0.28
Flavor FL -0.14 0.24 0.23 -0.03 0.18 0.98 0.35 -0.23 -0.61 -0.17 -0.63
Juiciness JC -0.05 0.26 0.14 0.02 0.43 0.29 0.56 -0.11 -0.39 -0.14 -0.66
Marbling MB -0.23 0.21 0.13 -0.14 0.14 0.20 0.76 0.20 -0.19 -0.27 -0.36
Fat Thick FT -0.10 0.07 0.09 -0.08 0.05 0.02 0.22 0.24 0.37 0.27 -0.19
Internal Fat KPH 0.01 -0.03 -0.02 -0.04 -0.06 -0.08 0.03 0.13 0.42 0.76 0.37
Hot Carc Wt HCW -0.07 0.12 0.15 0.02 0.03 -0.01 0.10 0.31 0.19 0.24 0.24
Ribeye Area RE

3

A 0.07 -0.06 -0.04 0.08 -0.05 -0.08 -0.04 -0.11 0.06 0.41 0.30  
Heritabilities are on the diagonals in bold black, genetic correlations are above the 
diagonals in black, and phenotypic correlations are below the diagonals in blue. 
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Figure 2. Design of Angleton Project 

The objectives of the DNA component of 
the CMP were to validate and charac-
terize 11 quantitative trait loci (QTL) for 
carcass and meat quality traits that were 
discovered in previous checkoff-funded 
research at TAMU (the Angleton Pro-
ject). The Angleton Project used a re-
source population (Figure 2) comprised 
of greater than 600 progeny in large, full-
sib families (produced by embryo trans-
fer) of a double, reciprocal backcross 
design between Angus and Brahman. 
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Validation of QTL discovery projects is necessary because of the substantial risk of 

haracterization of QTL involves determining which QTL are segregating in each breed, 

egregation of QTL in the CMP occurs within paternal half-sib families (Figure 3). Some 

As marker data were collected on the progeny of each sire, an analysis of the sire’s 

yij = Xjβj + Qijαij + eij
 

here yij is a vector of observations on the progeny of sire i for trait j, Xj relates 

false positive results, even in large, well-designed projects. However, failure to validate 
a QTL does not necessarily imply that the QTL was a false positive; it may simply mean 
that the QTL was segregating in the resource population used for discovery, but not in 
the population used for validation. 
 
C
how many sires per breed appear to be segregating for each QTL, and which traits are 
affected by each QTL. In other words, characterization seeks to determine the potential 
utility of the QTL in genetic improvement programs. 
 
S
sires segregate QTL, but many are homozygous at the QTL. The QTL analysis involved 
70 sires with 2,615 progeny with DNA marker data and phenotypes in 210 con-
temporary groups. There were 1,458 progeny with sensory data and DNA marker data. 

1 2 3 411 22 33 44

Figure 3. Segregation of QTL in Paternal Half-Sib Families 

Individual Sire Analysis 

progeny was performed and reported to the respective breed association. Figure 4 
shows an example of such a report. Each QTL was evaluated for the trait for which it 
showed the greatest association in the Angleton project. The model used was: 
 

w
observations to contemporary groups, βj is a vector of fixed contemporary group effects, 
Qij is a vector of probabilities that each progeny of i inherited QTL allele A of sire i minus 
the probability it inherited QTL allele B from its sire, αij is the fixed within-sire effect of 
QTL allele A minus the effect of QTL allele B on trait j, and eij is a vector of residuals. 
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Figure 4. Example of an Individual Sire Report 

 
 

Overall Analysis – Single Trait, Fixed QTL Model 
Upon completion of data collection, the entire dataset was analyzed together to 
determine which QTL were segregating and which traits they influenced. The first model 
used was: 

yj = Xjβj + Zsjsj + Qjαj + ej
 
where yj is a vector of observations on trait j, Zsj relates observations to sires, sj is a  
random vector of residual polygenic breeding values of sires, Qj is a block diagonal 
matrix of the Qij’s, αj is a vector of the αij’s (one element per sire), ej is a vector of 
residuals and the remaining terms are as previously defined. Sires were considered 
unrelated and Q was computed at the QTL position estimated in the TAMU Angleton 
project. The Q matrices were computed by an extended version of the GenoProb 
software (Thallman et al., 2001a,b; Thallman et al., 2002 ). 
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Table 2 contains significance levels 
from the fixed QTL analysis. It ad-
dresses the question “Does the QTL 
have an effect on the trait and is it 
segregating in the set of sires that 
were sampled in this breed?” A value 
of + indicates weak evidence (P<0.10) 
that the QTL affects the trait. A value 
of ++ indicates moderate evidence 
(P<0.05) and +++ indicates strong 
evidence (P<0.01) that the QTL influ-
ences the trait. An empty cell indicates 
that we do not have sufficient 
evidence to conclude that the QTL 
influences the trait, but it does not 
imply that we have evidence that the 
QTL does not influence the trait (it 
could be that we simply do not have 
enough evidence to decide). No QTL should be expected to influence every trait, but we 
should expect that some QTL will influence several traits. Therefore all QTL were tested 
for effects on all of the traits. 

+ (P<.10)+ (P<.10) ++ (P<.05)++ (P<.05) +++ (P<.01)+++ (P<.01)

Table 2. Significance levels from Fixed QTL 
analysis 

+++Yield Grade
+++KPH Fat

++++++Hot Carc. Wt.
+++++Fat Thickness

++++++Ribeye Area
+++Marbling

++Flavor
+++++++Juiciness

++++Conn. Tiss. Tend.
+++Myofibrilar Tend.
++++Overall Tend.
+++++Shear Force

1110987654321
Quantitative Trait LocusLevel of 

Significance

+++Yield Grade
+++KPH Fat

++++++Hot Carc. Wt.
+++++Fat Thickness

++++++Ribeye Area
+++Marbling

++Flavor
+++++++Juiciness

++++Conn. Tiss. Tend.
+++Myofibrilar Tend.
++++Overall Tend.
+++++Shear Force

1110987654321
Quantitative Trait LocusLevel of 

Significance

 
Table 3 presents the number of sires 
with highly significant QTL effects for 
each trait by QTL combination. It ad-
dresses the question “Is a specific 
sire segregating at the QTL?” and 
then counts the affirmative answers 
for each trait. It is the number of 
sires in the analysis that have strong 
evidence (P<0.01) of the QTL segre-
gating for the indicated trait. A sig-
nificant overall result can occur from 
either a few sires with strong evi-
dence or a larger number of sires 
with weaker evidence. Therefore, it 
is useful to look at the results from 
both perspectives. 

Table 3. Number of Highly Significant Sires 

1110987654321
Quantitative Trait LocusNo. of Highly 

Sig. Sires 
(P<.01)

112112Yield Grade
1232221KPH Fat
31144121Hot Carcass Wt.
221211131Fat Thickness

1133131Ribeye Area
121112111Marbling
1111Flavor

211132211Juiciness
2123111Conn. Tiss. Tend.
122111Myofibrilar Tend.
3211111Overall Tend. 

131611112Shear Force
1110987654321

Quantitative Trait LocusNo. of Highly 
Sig. Sires 
(P<.01)

112112Yield Grade
1232221KPH Fat
31144121Hot Carcass Wt.
221211131Fat Thickness

1133131Ribeye Area
121112111Marbling
1111Flavor

211132211Juiciness
2123111Conn. Tiss. Tend.
122111Myofibrilar Tend.
3211111Overall Tend. 

131611112Shear Force

 
Analysis of the marker data with a single trait model fitting QTL as fixed effects validates 
that at least some of the previous QTL have significant effects, and are good candidates 
both for marker-assisted selection, and for further study.  Most QTL seem to have 
pleiotropic effects, where the QTL influence two or more traits. 
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Breed Analysis 
Marker data were also analyzed by breed to validate which markers were segregating in 
each breed, as well as in the overall population. Tables similar to the previous two were 
constructed for each breed and distributed to the respective breed associations.  As 
expected, significance of marker effects varies widely across breeds, indicating the 
degree of heterozygosity for each QTL also varies by breed. However, because there 
were only between one and ten sires per breed, the within-breed analyses are not 
generally very powerful. More emphasis should be placed on the combined analyses for 
evaluating the effects of the QTL. 

 
Multiple Trait, Random Regression QTL Model 

The single trait analyses presented above involve a very large number of statistical 
tests. With so many tests, it is expected that a number of false positive results would 
occur. Because the number of significant results exceeds the expected number of false 
positives substantially, it appears likely that at least several of the QTL evaluated are 
segregating in the CMP families. However, it is not clear which ones are real and which 
are spurious.   
 
There are several sources of information that are not considered by the single trait 
analysis. 
 

• Most QTL probably influence a number of traits, to different degrees. In fact, due 
to chance, a real QTL would probably show significance in the single trait 
analysis for some, but not all, of the traits that it influences. Obviously, those 
traits that it has the greatest influence on are more likely to show significance. 

 
• If a sire is segregating at a real QTL, then his progeny that inherit QTL allele A 

instead of allele B should differ for all traits that the QTL influences. The 
magnitudes of those differences should be in proportion to the degree of 
influence that the QTL has on each of those traits. Furthermore, if allele A is 
defined as the allele with favorable effect on the trait most influenced by the QTL, 
then the directions of differences between alleles A and B for secondary traits 
should tend to be consistent across sires. 

 
• If a QTL is not real, then in a single trait analysis, we should not be surprised if 

one set of sires contributes evidence of segregation for one trait and a different 
set of sires contributes evidence of segregation for another trait. Furthermore, the 
directions and magnitudes of differences between alleles A and B for secondary 
traits would likely be inconsistent across sires, although residual correlations will 
prevent complete independence of these effects. 

 
The single trait analysis cannot take the above factors into account, but these factors 
are considered by a multiple trait analysis in which the QTL effects are fit as random. 
Such a model was implemented to help discern the real QTL from the false positives.  
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Unfortunately, the multiple trait, random QTL model increases the computational 
requirements by several orders of magnitude and software to implement it is more 
specialized than that required for the single trait analysis. 
 
Given the simple structure of the CMP pedigree, a random regression model similar to 
the fixed effects model described previously is a logical choice. The random regression 
model has essentially the same terms as the fixed effects model: 
 

yj = Xjβj + Zsjsj + Qjaj + ej
 
where aj is a vector of the random effects of sire QTL allele A minus allele B, nested 
within sire, and the remaining terms are the same as previously defined. However, in 
this model, records for t different traits are analyzed simultaneously. The (co)variance of 
sire effects can be represented as Σs ⊗ I, where Σs is a matrix of sire (co)variance 
parameters among traits and the (co)variance of QTL effects, a, can be represented as 
Σq ⊗ I, where Σq is a matrix of QTL (co)variance parameters among traits and  ⊗ 
represents the operator for the Kronecker product of two matrices. The (co)variances of 
the residuals of a progeny with all traits measured are represented as Σe. Sires were 
considered unrelated. 
 
The size of the mixed model equations (MME) is the same per trait as for the model in 
which the QTL were considered fixed (210 equations for contemporary groups, 70 for 
sire breeding values, and 70 for QTL segregation effects, for a total of 350 equations 
per trait). Because the computations required to invert a matrix are roughly proportional 
to the cube of its size, two, three, and four trait analyses require roughly 8, 27, and 64, 
respectively, times as much computation as a single trait analysis. Furthermore, the 
single trait, fixed QTL analysis required estimation of only two variances, whereas two, 
three, and four trait analyses require estimation of 9, 18, and 30 (co)variance 
parameters, respectively. Consequently, the number of iterations required for variance 
component estimation is considerably greater with more traits. 
 
This model was initially attempted with the Mixed Procedure of SAS. However, it would 
run only if the residual correlations were constrained to zero (Σe was forced to be 
diagonal). This compromise was accepted because those correlations were not of 
primary interest and were thought to only help to reduce the noise in the analysis. 
However, this led to results that looked too good to be true being presented at the 
workshop. It was discovered, after the December 2003 BIF Genetic Prediction 
Workshop, that covariances among QTL were able to account for some of the 
covariance among residuals and this biased upward the estimates of QTL variances 
and the significance of QTL effects. Subsequently, all analyses have included residual 
correlations. 
 
After the workshop, a group consisting of Steve Kachman, Janice Rumph, Dick Quaas, 
Rohan Fernando, Dale Van Vleck, Kathy Hanford, Gerhard Moser (Genetic Solutions, 
Australia), John Pollak, Dan Moser, Elizabeth Dressler, and Mark Thallman met to 
discuss statistical and computational options for proceeding with the analysis. Steve 
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Kachman tested MATVEC (Kachman and Fernando, 2002; Wang et al., 2003) and 
Janice Rumph tested ASREML for analysis of the CMP data with the random regression 
model. The ASREML software worked well for some trait combinations, but did not 
provide estimates when marbling was included in the analysis. The MATVEC software 
(developed jointly by Tianlin Wang, Rohan Fernando, and Steve Kachman) rapidly 
provided estimates that agreed with estimates Mark Thallman had obtained by doing a 
Cholesky transformation of the data to account for residual correlations with SAS (an 
approach that was slow and that complicated the interpretation of the results).  
 
For each QTL, multiple trait analyses were run at one or two cM intervals throughout the 
region spanned by the marker data to estimate the position of each QTL from the CMP 
data. All analyses described subsequently are conditional on those estimated positions. 
 
One of the primary questions to be answered in the CMP project was “which of the 11 
QTL could be shown to segregate in the U. S. beef cattle population?” When QTL are fit 
as random effects, the typical approach to hypothesis testing is to use the likelihood 
ratio test (LRT) to test whether the variance due to the QTL is zero. However, with 
multiple traits, there were a variety of hypotheses that could have been tested and it 
was not clear which of them would be most powerful (have the greatest likelihood of 
detecting a QTL that is real). Furthermore, testing all possible hypotheses would 
probably decrease the power. The group agreed on sets of two or three biologically 
related traits that spanned the economically important traits that were measured. 
 
Another challenge in testing hypotheses with multiple trait models is that the test 
statistics may depart substantially from the textbook distributions, which are based on 
asymptotic theory. Permutation testing (Churchill and Doerge, 1994) is one way to 
determine the sampling distribution of the test statistic, but it requires repeating the 
analysis thousands of times. Therefore, it is only feasible for analyses that can be 
conducted very rapidly.  
 
Radu Totir (a postdoctoral researcher working with Rohan Fernando at Iowa State) 
performed multiple trait hypothesis tests and permutation tests using the random 
regression model in MATVEC, which is feasible for such analyses. The significance 
levels resulting from those tests are reported in Tables 4 and 5. Significance levels are 
the probabilities that the variation accounted for by the QTL is due to chance (probability 
of obtaining a spurious result). Therefore, smaller numbers indicate stronger evidence 
supporting the effect of the QTL on a trait. 
 
Several QTL showed significant effects for two or more traits.  QTL 6 had significant 
effects on shear force, overall tenderness, and ribeye area.  QTL 7 was significant for 
ribeye area, hot carcass weight, and juiciness.  QTL 8 had significant effects on shear 
force, overall tenderness, ribeye area, hot carcass weight, and flavor.  QTL 10 had 
significant effects on overall tenderness and juiciness.  In addition, QTL 4 and 5 had 
significant effects on fat thickness, and QTL 11 had noteworthy effects on marbling. 
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Table 4. χ2 significance levels from multiple trait hypothesis testsa,b. 
Trait Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q1
Shear Force 0.50 0.50 0.50 0.32 0.25

1
0.50 0.02 0.16 0.49 0.50

Overall Tnd 0.50 0.50 0.50 0.37 0.44 0.50 0.02 0.49 0.50

Fat Thick 0.10 0.50 0.48 0.08 0.05 0.12 0.20 0.50 0.10 0.34 0.33
Marbling 0.15 0.40 0.44 0.31 0.32 0.11 0.12 0.50 0.06 0.37

Fat Thick 0.19 0.34 0.50 0.15 0.12 0.23 0.32 0.50 0.17 0.38 0.40
Marbling 0.17 0.41 0.48 0.31 0.21 0.16 0.11 0.50 0.11 0.45 0.01
Internal Fat 0.50 0.08 0.50 0.38 0.16 0.47 0.49 0.50 0.44 0.43 0.44

Ribeye Area 0.50 0.50 0.18 0.44 0.32 0.05 0.05 0.50 0.50 0.50
Hot Carc Wt 0.50 0.50 0.19 0.47 0.50 0.47 0.01 0.50 0.50 0.49

Juiciness 0.50 0.23 0.40 0.18 0.24 0.10 0.10 0.50 0.50 0.12 0.38
Flavor 0.50 0.34 0.47 0.26 0.22 0.31 0.28 0.02 0.50 0.10 0.34
Overall Tnd 0.50 0.38 0.42 0.41 0.49 0.02 0.48 0.03 0.50 0.24 0.49

Flavor 0.50 0.45 0.50 0.50 0.28 0.30 0.34 0.03 0.32 0.11 0.33
Overall Tnd 0.50 0.29 0.50 0.50 0.45 0.01 0.35 0.02 0.50 0.24 0.50

Juiciness 0.50 0.33 0.46 0.11 0.50 0.11 0.05 0.49 0.50 0.06 0.41
Overall Tnd 0.50 0.37 0.49 0.31 0.50 0.01 0.45 0.09 0.50 0.14 0.46

0.0003
0.0007 0.003

0.007

0.009
0.003

 
aTwo or three traits were analyzed together as indicated by the groupings in the table. 
For each cell, the hypothesis tested was that the variance in the indicated trait (and 
associated covariances) due to the corresponding QTL was zero (with the remaining 
QTL variances and covariances included in the model). 
bOne additional analysis was run for QTL 8: Shear Force (P<0.03), Overall Tnd 
(P<0.01), and Hot Carc Wt (P<0.0005). 
 
Table 5. Significance levels from multiple trait permutation testsa. 
Trait Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q1
Shear Force

1
0.040 n.t.

Overall Tnd 0.030

Fat Thick 0.043 0.030 0.180 0.200 n.t.
Marbling n.t. n.t. 0.110 0.079

Ribeye Area 0.011 0.037
Hot Carc Wt n.t.

Flavor 0.022
Overall Tnd 0.015

Juiciness 0.107 0.024 0.050
Overall Tnd 0.021 n.t. n.t.

0.008
0.001 0.004

0.002

0.008
0.006 0.002

 
aTwo traits were analyzed together as indicated by the groupings in the table. Only 
selected hypotheses were tested by permutation. Cells containing “n.t.” indicate that a 
QTL effect for that trait was not included in the analysis; the hypothesis for the other trait 
is that the QTL influences that trait (1 df). 
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The analyses were performed in groups of two or three traits, as indicated in Table 4. 
The hypotheses tested were that the QTL variance (and the associated covariances) for 
a specific trait were zero. Thus, the full model included QTL (co)variance parameters for 
all traits in the model, and the null hypothesis model included (co)variance parameters 
for all traits, except the one being tested. The significance levels in Table 4 are 
“textbook” values, computed from a χ2 distribution with degrees of freedom equal to the 
number of parameters constrained (number of traits) and the resulting probability 
divided by two to account for the null hypothesis being on a boundary of the parameter 
space (Self and Liang, 1987; Littell et al., 1996).  
 
As is evident from Table 4, significance levels can differ considerably, depending on the 
set of traits included in the model. For example, overall tenderness is included in three 
different two-trait analyses in Table 4. In the cases of QTL 6 and QTL 8, overall 
tenderness was most significant when paired with another trait with a significant effect 
on that trait. However, in the case of QTL 10, overall tenderness was most significant 
when paired with the trait (shear force) that showed the least evidence of being affected 
by QTL 10.  
 
Table 4 also demonstrates that significance levels can differ substantially when a third 
trait is added to a two-trait analysis, depending on whether the QTL affects the third 
trait, or not. In the case of fat thickness and marbling, adding internal fat to the model 
decreased levels of significance for the first two traits rather uniformly. However, when 
hot carcass weight was added to the analysis of shear force and overall tenderness for 
QTL 8 (results not shown), the p-value for shear force increased slightly to 0.03, for 
overall tenderness decreased slightly to 0.01, and for hot carcass weight decreased 
substantially to 0.0005. 
 
Tests were also performed for single trait analyses using the random regression model 
(results not shown). They followed the same general pattern as the single trait fixed 
QTL tests presented in Table 2. 
 
Permutation tests were performed to obtain more reliable significance levels where the 
values in Table 4 appeared to at least approach significance. Table 5 contains 
significance levels from 2,000 permutations for selected hypotheses.  A small proportion 
of the permutations failed to converge and were discarded.  In most cases, the values in 
Table 4 were more significant for a set of two-trait analyses than for the three-trait 
analyses. Consequently, all of the permutation tests were for two-trait analyses. Where 
values are presented for both traits in a pair, the hypothesis being tested is the same as 
was described for Table 4.  
 
However, when one trait in a pair is unaffected by the QTL, the power of detecting the 
QTL for the second trait is improved by dropping the QTL effect for the first trait from 
both the alternative and null hypotheses, resulting in a one degree of freedom test for 
the second trait. In this case, the effect of the QTL on the first trait is not tested. Where 
this approach was used in Table 5, a significance level is given for the second trait and 
the first trait is indicated by n.t. (not tested). 
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More impressive significance levels could undoubtedly have been obtained by testing 
additional trait combinations, especially trait combinations suggested by preliminary 
analyses. However, such significance levels would need to be adjusted for the multiple 
(and perhaps selective) tests of hypotheses that would not be independent. It was not 
feasible to use permutation testing to obtain appropriate significance thresholds for such 
an approach.  
 
Nonetheless, an approach that considers the correlated effects of a QTL on a subset 
(determined by the data) of the traits measured seems to offer the potential for 
increased power, provided that appropriate significance thresholds can be established. 
Much work remains to be done on QTL analyses with true multiple trait models. 
 

Multiple Trait, Random, Gametic QTL Model 
Another of the primary results of a random QTL analysis is the amount of variance in 
phenotypes that can be explained by the QTL. This can be most easily interpreted as 
the proportion of phenotypic variance explained by the QTL, just as heritability is the 
proportion of phenotypic variance explained by breeding value. In a sire model, the 
variance due to breeding value is estimated by multiplying the estimate of sire variance 
by four because every calf inherits exactly half of its breeding value from its sire.  
 
Unfortunately, with the random regression model, the transformation from the QTL 
variance parameter to the phenotypic variance explained by the QTL is not so simple, 
because the values in Q for each calf differ, depending on the amount of information 
contributed by the DNA markers. Calves with informative markers on both sides of and 
close to the QTL position have Qijk very close to either +1 or -1 (are essentially fully 
informative, but calves with no marker information have Qijk = 0 (are completely 
uninformative) and yet other calves have an informative marker on only one side of, and 
at varying distances from, the QTL position. The latter calves have intermediate values 
of Qijk and are partially informative. While every calf in the DNA analysis had marker 
data at most of the QTL, very few of them were completely informative at every QTL. 
 
A fully informative calf has a residual that is “truly residual” to the QTL model, but a 
completely uninformative calf has a residual variance that consists of the “true residual 
variance” plus variance due to segregation at the QTL (expected to be half of the phe-
notypic variance accounted for by the QTL). Partially informative calves have residual 
variances somewhere in between. Therefore, calves differ in the proportion of pheno-
typic variance accounted for by the QTL when the random regression model is used.  
 
Furthermore, the relationship between the QTL variance parameter and phenotypic 
variance explained by the QTL changes with the position of the QTL. This is most 
evident when there is marker data on only one side of the QTL. The estimated QTL 
variance increases as the putative distance between the QTL and the markers 
increases, but the phenotypic variance explained by the QTL must remain the same. A 
similar phenomenon is well known in the analysis of QTL as fixed effects: as the 
putative distance between a QTL and markers to one side increases, the magnitude of 
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the QTL effect estimate increases. It is not possible to distinguish between a modest 
QTL close to the markers and a large one far away. 
 
Consequently, the random regression model is not well-suited to estimation of the 
phenotypic variance accounted for by the QTL. However, the gametic model proposed 
by Fernando and Grossman (1989) is well-suited to this problem because the QTL 
effect for each progeny is considered in the model, instead of only the sire’s expected 
contribution to each of his progeny at the QTL, as in the random regression model. The 
multiple trait gametic model is: 
 

yj = Xjβj + Zujuj + Zujvmj + Zujvpj + ej
 
where Zuj relates observations to individuals, uj is a random vector of residual polygenic 
breeding values of the individual, vmj and vpj are random vectors of maternal and 
paternal, respectively, gametic values of the individual at the QTL, and the remaining 
terms are the same as previously defined. The (co)variance of QTL effects, can be 
represented as Σq ⊗ G, where Σq is a matrix of QTL (co)variances among traits. Sires 
were considered unrelated. 
 
Because the segregation of QTL alleles from sire to progeny is accounted for in vpj 
instead of in ej, a clean estimate of the phenotypic variance accounted for by the QTL is 
available. It is equal to twice the appropriate diagonal element of Σq. 
 
The size of the mixed model equations (MME) is considerably greater for the gametic 
model. There are 2,615 progeny, 2,615 dams, and 70 sires (5,300 individuals) in each 
of uj, vmj, and vpj, plus 210 contemporary group equations, for a total of 16,110 
equations per trait. 
 
These data were analyzed in a set of four-trait analyses using an extended version of 
the MTDFREML software package (Boldman et al., 1995). Because MTDFREML uses 
sparse matrix techniques, the computational requirements do not increase as rapidly 
with size of the MME as was indicated previously, but the large number of (co)variance 
parameters to be estimated (30) requires that a large number of iterations be 
performed. Additional analyses were performed with modified starting values for 
subsets of parameters to ensure that convergence was achieved. The computational 
demands of this approach currently preclude its use in permutation testing. 
 
Table 6 contains the estimated percentages of phenotypic variance accounted for by 
each of the 11 QTL for each trait. The amount of variance explained indicates the 
magnitude and practical significance of the QTL effect. As is the case for all analyses 
reported herein, each QTL was analyzed separately; no multiple QTL analyses have 
been performed. Values of at least 5% are indicated in blue. We should expect much of 
the variation in truly quantitative traits to be accounted for by a number of QTL that each 
account for a relatively small proportion of the variation, especially when evaluating data 
that are pooled over 13 breeds. 
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As expected, most of the QTL with significant evidence of segregation account for some 
of the variance in a number of traits. Typically, one or a few closely related traits will be 
most influenced by a QTL and a number of other traits will be influenced to a lesser 
extent. 
 
Table 6. Percentage of phenotypic variance accounted for by each QTL. 
Trait Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q1
Shear Force 1 0 1 3 3 12 0 6 3 1
Overall Tnd 0 1 1 1 0 10 2 8 0 4
Myofib Tnd 1 2 0 1 0 9 2 8 0 4
Cn Tiss Tnd 3 1 0 0 0 12 4 8 0 2
Cooking Loss 4 2 5 0 3 1 0 0 2 2 1
Flavor 1 1 0 3 2 1 3 3 2 5 3
Juiciness 0 4 1 6 0 6 7 0 0 5 3
Marbling 1 2 2 2 1 4 4 1 4 1 8
Fat Thick 3 1 3 5 6 4 3 2 2 2 2
Internal Fat 0 7 0 3 5 2 0 1 2 1 1
Hot Carc Wt 1 0 2 0 0 2 6 10 0 1
Ribeye Area 0 0 4 2 3 7 7 3 0 1 1

1
0
0
0
0

3
 

 
Correlations Among QTL Effects on Multiple Traits 

Whenever QTL appear to have effects on multiple traits, it is useful to know whether the 
allele that is favorable for one trait is favorable or unfavorable for others, or whether 
there are antagonistic relationships that decrease the difference in net merit between 
the genotypes of the QTL.  To answer this question, correlations among the effects of 
QTL 6, 7, and 8 are reported in Tables 7, 8, and 9, respectively. These correlations 
were obtained from a series of 19 four-trait analyses for each of the QTL and each 
correlation represents the average of from 1 to 6 analyses in which that correlation was 
estimated. The proportions of phenotypic variance accounted for by the QTL in these 
tables are each averages of five to seven four-trait analyses. 
 
If a QTL has pleiotropic effects on multiple traits, then it should be expected to influence 
all of those traits in the progeny of sires that are heterozygous for the QTL and no traits 
in progeny of sires that are homozygous for the QTL. Furthermore, assuming 
pleiotrophy, the directions of QTL effects should be consistent across heterozygous 
sires and the magnitudes of effects should at least be proportional, with respect to traits, 
across sires. If these conditions are met, then the expected values of the correlations of 
QTL effects among the traits will be either 1 or -1. 
 
Not all genetic correlations are due to pleiotrophy; some certainly are due to multiple, 
linked genes that affect different traits. Therefore, we should not expect all correlations 
among QTL effects to be 1 or -1, but it does seem reasonable to expect such 
correlations to tend to be of large absolute value. The effect of the QTL correlations is 
taken into account in multiple trait hypothesis tests and, thus, the correlations 
themselves do not directly provide additional information from which to decide which 
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QTL are most likely to be real. However, the QTL correlations may help to explain why 
multiple trait tests differ from each other or from the single trait tests. 
 
Table 7. Correlations among effects of QTL 6 (proportion of phenotypic variance 
accounted for by QTL 6 on the diagonals). 
Trait Trt WBSF OT MT CT CL FL JC MB FT KPH HCW REA
Shear Force WBSF 0.12
Overall Tnd OT -0.96 0.10
Myofib Tnd MT -0.99 1.00 0.09
Cn Tiss Tnd CT -0.89 0.95 0.96 0.12
Cooking Loss CL 0.67 -0.86 -0.84 -0.76 0.01
Flavor FL 0.31 0.62 0.32 0.57 -0.57 0.01
Juiciness JC 0.11 0.04 0.04 0.27 -0.74 0.79 0.06
Marbling MB 0.23 -0.57 -0.41 -0.62 0.90 -0.85 -0.24 0.04
Fat Thick FT -0.40 0.43 0.28 0.03 0.18 0.85 0.70 0.84 0.04
Internal Fat KPH -0.79 0.93 0.99 0.70 -0.90 -0.43 -0.66 -0.19 0.41 0.02
Hot Carc Wt HCW -0.23 0.18 0.02 -0.16 -0.51 -0.35 -0.45 0.87 0.54 1.00 0.02
Ribeye Area REA 0.17 0.09 0.14 0.06 0.47 -0.57 -0.77 0.35 0.91 0.21 -0.02 0.07  
 
In the case of QTL 6, all of the correlations among WBSF and sensory tenderness are 
strong and in the favorable directions. This means the allele that increases shear force 
decreases tenderness score, where higher tenderness scores indicate greater 
tenderness.  Therefore, selecting for the favorable allele at QTL 6 for shear force will 
also improve overall tenderness. This, together with the proportion of phenotypic 
variance (9-12%) accounted for by QTL 6, supports the conclusion that the effects of 
QTL 6 on tenderness are real, as indicated by the significance levels reported in Tables 
4 and 5. This also suggests that all of these effects are likely due to pleiotropic effects of 
the same polymorphism(s) in a single gene. 
 
Correlations of the effect of QTL 6 on flavor (FL) and juiciness (JC) with tenderness 
traits were weak, but in the favorable direction. Correlations of internal fat (KPH), fat 
thickness (FT), and marbling (MB) with tenderness were generally antagonistic. 
 
The estimate that QTL 6 accounts for 7% of the phenotypic variance (P = 0.011) in 
ribeye area (REA) is large enough to be quite interesting. However, the correlations of 
the effect of QTL 6 on REA with its effects on the tenderness traits are very weak. This 

Table 8. Correlations among effects of QTL 7 (proportion of phenotypic variance 
accounted for by QTL 7 on the diagonals). 
 Trait Trt WBSF OT MT CT CL FL JC MB FT KPH HCW REA
Shear Force WBSF 0.00
Overall Tnd OT -0.99 0.02
Myofib Tnd MT -0.99 1.00 0.02
Cn Tiss Tnd CT -1.00 1.00 0.99 0.04
Cooking Loss CL 0.41 -0.33 -0.27 -0.98 0.00
Flavor FL 0.98 0.83 0.76 0.84 0.99 0.03
Juiciness JC 0.99 0.57 0.60 0.58 0.99 0.97 0.07
Marbling MB -0.84 0.75 0.50 0.70 0.96 0.73 0.55 0.04
Fat Thick FT 0.95 1.00 0.92 1.00 0.99 1.00 1.00 0.81 0.03
Internal Fat KPH 0.95 1.00 1.00 1.00 0.99 0.99 1.00 0.54 0.98 0.00
Hot Carc Wt HCW -0.98 0.48 0.24 0.60 -0.99 -0.23 -0.23 0.70 0.43 0.20 0.06
Ribeye Area REA -0.99 0.20 -0.09 0.34 -0.99 -0.52 -0.52 0.56 0.12 -0.13 0.96 0.07
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would suggest that there may be another gene, in the same general region of the 
genome as, but in linkage equilibrium with, the gene influencing tenderness. If this is the 
case, it should be possible to select for favorable effects of both genes. The lack of 
correlation between the QTL effect on REA and hot carcass weight (HCW) is puzzling, 
especially in light of the positive remaining correlations among these traits, FT and KPH. 
 
For QTL 7, the significant effects of increased REA and HCW were the result of the 
same allele, but the allele that increased those traits tended to decrease JC and FL. 
This allele tended to improve MB and tenderness, although the proportion of variance in 
tenderness traits accounted for by QTL 7 was low.  
 
Table 9. Correlations among effects of QTL 8 (proportion of phenotypic variance 
accounted for by QTL 8 on the diagonals). 
Trait Trt WBSF OT MT CT CL FL JC MB FT KPH HCW REA
Shear Force WBSF 0.06
Overall Tnd OT -0.97 0.08
Myofib Tnd MT -1.00 1.00 0.08
Cn Tiss Tnd CT -0.81 0.97 0.99 0.08
Cooking Loss CL 0.90 -0.14 0.00 0.46 0.00
Flavor FL -1.00 1.00 1.00 0.93 -0.99 0.03
Juiciness JC -0.99 0.93 0.99 0.67 -0.99 0.83 0.00
Marbling MB -0.99 0.95 0.87 0.67 -0.92 0.95 0.99 0.01
Fat Thick FT -0.35 0.67 0.15 0.67 -0.58 1.00 0.99 0.78 0.02
Internal Fat KPH 0.69 -0.44 0.24 -0.63 0.85 -1.00 -0.99 -0.47 -0.87 0.01
Hot Carc Wt HCW -0.49 0.66 0.61 0.70 -0.14 0.61 -0.60 0.97 0.18 0.01 0.10
Ribeye Area REA -0.81 0.86 0.88 0.91 -0.52 0.55 -0.65 0.98 -0.30 0.48 0.93 0.03  
 
It was especially encouraging that the correlations among effects of QTL 8 were all 
favorable.  The allele that decreased shear force improved overall tenderness, as 
expected, but was also associated with increased flavor, increased carcass weight, and 
increased ribeye area. 
 
The effect of QTL 10 on JC is favorably correlated (results not shown) with effects on FL 
(0.73), MB (0.73), CT (0.86), OT (0.71), and MT (0.61). QTL 10 accounts for 2% or less 
of phenotypic variances in the remaining traits. The effect of QTL 11 on MB is favorably 
correlated (0.63) with its effect on JC. The effects of QTL 11 on remaining traits are 
either weakly correlated with its effect on MB or account for 1% or less of phenotypic 
variance. The effect of QTL 5 on FT is uncorrelated (-0.05) with its effect on KPH. 
 
There are inconsistencies in the correlations in Tables 7-9 due to the combinations of 
four-trait analyses that were used, along with the variable number of records per trait. A 
single 12-trait analysis for each QTL would have provided more consistent correlations, 
but assuring convergence of four-trait analyses (each with 30 (co)variance parameters) 
is sufficiently challenging for today’s software. 
 
The amount of residual variance associated with phenotypes for economically important 
traits is one of the most limiting factors in determining which locations in the genome 
influence those traits. Considering observations for a large number of traits 
simultaneously, especially when some of the traits are inexpensive to measure, is likely 
to be an effective way to reduce the impact of this limitation. Therefore, it seems that 
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statistical developments, both computational and theoretical, in the area of multiple trait 
analysis of QTL should be an area of emphasis for the next several years. 
 
Interpretation of the results presented here should be made in the context of both the 
amount of statistical evidence obtained for each QTL on the various traits and the 
amount of evidence in the literature from other studies. 
 

How Can Cattle Breeders Use the Results? 
The most direct and immediate way is for breed associations to compute and publish 
EPDs for shear force and sensory traits from the data generated by the CMP. 
 
Use of the DNA results is contingent on a partner commercializing tests based on the 
QTL. This could be done either in the form of direct tests or linked markers.  
 
The existing linked markers could be used to select among progeny and grandprogeny 
of the 70 legacy bulls that were evaluated in the DNA component of the CMP. While this 
may seem to be a small number of bulls, these 70 bulls were very influential in their 
respective breeds and have produced hundreds of thousands of progeny and even 
larger numbers of grandprogeny. 
 
Linked markers could be commercialized quickly with relatively little development cost 
and could be used to improve accuracy of selection among progeny of the CMP sires. 
The technology would probably be used effectively by only a small proportion of the 
breeders in any breed, but the improved selection response in those herds would likely 
benefit the entire breed. Some additional development of statistical/computational 
methods would be required to include marker information in national cattle evaluation.  
 
This approach would also 
require continued collection 
of phenotypes and marker 
data on progeny groups for 
the approach to be sustain-
able long-term. However, 
fewer phenotypes would be 
required than without the 
markers and accurate ge-
netic evaluations could be 
obtained earlier in life (prior 
to breeding decisions). 

Purebred Commercial Herd

AI

Natural service, multisire matings

2 yr generation interval

Collect phenotypes

AI

AI

Use markers to help decide 
which sires to progeny test 
sons of

QTL markers establish 
paternity

Progeny establish QTL 
phase
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Figure 5. Progeny Testing Scheme 

 
The linked markers from the 
CMP could be used effec-
tively in intensive breeding 
programs for tenderness, as 
shown in Figure 5. Young 
bulls would be progeny test-
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ed in multiple sire matings to commercial cows and, at the same time, would be mated 
to seedstock cows to produce the next generation of herd sire candidates. Some of the 
CMP markers would be used to determine paternity of the multiple sired calves. This 
would not necessarily be any more expensive than a paternity test based on 
anonymous DNA markers and should be cost-competitive with progeny testing by 
artificial insemination (AI) matings. The QTL effects of the sires for the markers used in 
paternity testing could be estimated at no additional cost and those estimates could be 
used with marker data on seedstock progeny of the tested sires to select the next 
generation of bulls to be progeny tested. Provided that phenotypes could be collected 
by about 14 months of age, this approach would allow marker assisted progeny testing 
at a two-year generation interval with the existing markers. 
 

The Next Steps for Application of the CMP Results 
Although there are several scenarios under which the CMP QTL could be used as 
linked markers, most commercial interest is in association (linkage disequilibrium) or 
functional tests. Therefore, the most promising QTL should be converted into 
association tests based on SNP.  As illustrated in Figure 6, the CMP population and 
DNA samples could be an important resource to aid in converting the QTL (using Q6 as 
an example) into association tests as follows: 
 
1. Identify positional candidate 

genes under QTL6. 
2. Rank sires by evidence of seg-

regation at QTL6. 
3. Sequence portions of positional 

candidate gene(s) in top 8 sires. 
4. The best SNPs are heterozygous 

in the greatest number of top 
sires. 

5. Score those in remaining sires 
and test concordance with QTL6. 

The SNP with greatest concordance 
could then be used in commercial 
DNA tests following validation in 
other populations. 

12 3 4

Sires Ranked by Decreasing Evidence of Segregation at Q6

66 additional 
bulls in 
between

1122 33 44

Sires Ranked by Decreasing Evidence of Segregation at Q6

66 additional 
bulls in 
between

Figure 6. CMP population is a valuable resource 
for conversion of QTL into Association Tests 

 
Conclusions 

The primary objectives of the NCBA Carcass Merit Project were to collect data for car-
cass merit EPDs, including tenderness, and to attempt to validate previously discovered 
QTL for carcass merit in the U.S. cattle population.  Both of those objectives were 
accomplished, but much work remains to be done in this area.   
 
Five of the QTL (6, 7, 8, 10, and 11) show solid evidence of segregation in relevant beef 
industry populations. Two additional QTL (4 and 5) appear worthy of further 
investigation. The remaining QTL (1, 2, 3, and 9) did not show significant effects on any 
of the traits evaluated in the study.  However, it is possible that the latter QTL have 
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unique alleles in Brahman and non-Brahman populations.  Unfortunately, only six 
Brangus or Simbrah sires were analyzed in CMP, with a total of 161 progeny.   
 
Besides the stated objectives, several other benefits have resulted from the Carcass 
Merit Project, both tangible and intangible.  The project perhaps represents the greatest 
cooperative effort ever among U.S. beef breed associations.  Experiences gained and 
goodwill generated in this project will allow further cooperative research by breeds, 
which will benefit the entire beef industry.  The project has also raised the visibility of 
marker-assisted selection and genomics in the beef industry.  The considerable publicity 
received and educational efforts undertaken by the Carcass Merit Project have moved 
the industry closer to embracing selection aided by DNA tests, and have improved the 
understanding of issues with these technologies.  In addition, the project has revealed 
the considerable cost and coordination required for industry-wide tenderness data 
collection. Furthermore, the CMP has resulted in greater understanding of, and 
development of methods to address, statistical issues in the validation of quantitative 
trait loci in populations representative of the U.S. beef industry. 
 
The most significant result of the Carcass Merit Project is the sizeable database of 
phenotypic information and DNA samples collected from a wide cross section of U.S. 
beef germplasm.  Already, data and samples stored by breed associations are being 
used to validate DNA tests marketed to U.S. cattle producers. These resources could 
be extremely valuable tools for converting QTL (both those developed in the Angleton 
project and in public research) into more easily used association or functional tests. 
Having a large unbiased resource population, representative of the U.S. beef cattle 
population, justifies the industry’s investment in this project, and stands to be the 
project’s greatest legacy. 
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