
Proceedings of the Beef Improvement Federation 41st Annual Research Symposium 
April 30 – May 3, 2009, Sacramento, California, USA 

184 
 

Estimation of the Proportion of Genetic Variation Accounted for by DNA Tests 
 

R.M. Thallman1, K. J. Hanford2, R. L. Quaas*3, S. D. Kachman2, R. J. Tempelman4, R. 
L. Fernando5, L. A. Kuehn1, and E. J. Pollak3. 

 
1USDA-ARS U.S. Meat Animal Research Center, Clay Center, NE, 2University of 
Nebraska, Lincoln, NE, 3Cornell University, Ithaca, NY, 4Michigan State University, East 
Lansing, MI, and 5Iowa State University, Ames, IA 

Abstract 
An increasingly relevant question in evaluating commercial DNA tests is "What 
proportion of the additive genetic variation in the target trait is accounted for by the 
test?" Therefore, several estimators of this quantity were evaluated by simulation of a 
population of 1000 animals with 100 sires, each with 10 progeny. Three heritabilities 
(0.1, 0.3, and 0.5) of the target trait and four proportions of genetic variation (0.04, 0.16, 
0.36, and 0.64) accounted for by the molecular breeding value (MBV) for the DNA test 
were simulated. The first estimator evaluated is the reduction in estimated sire variance 
(R̂gRV

2) when the MBV is added as a fixed covariate to a single-trait model for the target 
trait divided by the sire variance from the model without the MBV. The second estimator 
is based on the regression of phenotype on MBV (R̂gRPM

2) from a single trait sire model 
in which the MBV is a fixed covariate (this is the model that has been standard in 
independent validations since DNA tests began being reported as MBV). This estimator 

is computed as R̂gRPM
2 ≅ 

b̂2 σ̂2
pm

σ̂2
gy ĥ

2
gm

  where b̂ is the regression of the target phenotype on 

MBV, σ̂2
pm is the phenotypic variance of the MBV, ĥ2

gm is the heritability of the MBV, and 
σ̂2

gy is the additive genetic variance of the target trait. The third estimator is the 
restricted maximum likelihood (REML) estimate of additive genetic correlation squared 
(R̂gMT

2) in a two-trait animal model for the target trait and the MBV (as the second trait). 
In this case, the only fixed effect in the model for MBV is a mean. The standard error of 
R̂gMT

2 was computed by multiplying the standard error of the genetic correlation by twice 

the genetic correlation. The mean of R̂gMT
2 tended to be closer to the simulated values 

than R̂gRV
2 and R̂gRPM

2, although all three estimators performed reasonably for most 

parameter sets. The standard deviations of estimates among replicates of R̂gMT
2 were 

generally smaller than R̂gRV
2 and R̂gRPM

2 and, at low heritability, were much smaller. All 
three estimators can produce erratic results in replicates in which the estimate of the 
additive variance approaches zero. Data sets in which the estimated heritability is much 
lower than expected should be considered inadequate for estimating the proportion of 
additive variation. The R̂gRV

2 estimator can produce negative estimates and the R̂gRV
2 

and R̂gRPM
2 estimators can produce estimates > 1 of the proportion of additive variance 

explained. The R̂gMT
2 estimator has the advantage of producing estimates within the 
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parameter space. The computed standard errors of R̂gMT
2 were similar to the standard 

deviation of the estimates. This property is another advantage of R̂gMT
2 over R̂gRV

2 and 

R̂gRPM
2, for which empirical methods for computing standard errors are not obvious. It is 

recommended that the R̂gMT
2 estimator be used for estimating the proportion of additive 

variation explained by a DNA test and that it be referred to simply as R̂g
2. Similar 

estimators of the proportion of phenotypic variance explained by DNA tests for 
application in marker-assisted management (MAM) will also be explored. Practical 
considerations in the application of these statistics are discussed. 

Introduction 
The proportion of additive genetic variation accounted for by a DNA test is a 

useful metric with which to quantitatively evaluate the merit of commercial DNA tests for 
marker-assisted selection (MAS) of seedstock. Until now, the estimation of this statistic 
has been considered a difficult problem.  

We assume throughout that DNA test results will be presented in the form of 
molecular breeding values (MBV). They are continuous values intended to predict the 
breeding values of animals based only on the DNA test results. They are typically 
expressed in units of the trait and assumed to be scaled equivalent to twice the EPD. 
However, in practice, they are often scaled differently. There should be an MBV for 
each trait that a DNA test is capable of predicting. Most current commercial DNA tests 
for quantitative traits in beef cattle are expressed as MBV (or closely related values), 
although some companies may use different names for them.  

Here we describe a theoretically desirable estimator that should be 
computationally feasible for data sets of the size we are likely to be able to use for 
estimation. It is computed from a model that has desirable properties for the inclusion of 
MBV in the national cattle evaluation (NCE) system. This estimator of the proportion of 
additive genetic variation due to MBV is directly related to the variances and 
covariances that are required to incorporate MBV into NCE as described by Kachman 
(2008) and applied by MacNeil et al. (2009). Inclusion of MBV into NCE in lieu of 
genotypes is necessary because NCE does not have access to individual SNP 
genotypes associated with the commercialized tests. 

We will also describe several other estimators of proportions of variation derived 
from simpler models and compare their performance on simulated data. We will also 
examine some of the shortcomings of these estimators and the effects of some basic 
assumptions on the comparison. 

Marker Assisted Management (MAM) 
DNA tests have at least as much potential prediction of genetic merit of 

commercial cattle for application in MAM as they have for the application of MAS in 
breeding cattle. Two fundamental differences between these applications exist. First, in 
MAS, the objective is to improve breeding value (the additive component of genetic 
merit) and therefore MBV for application in MAS should not include the non-additive 
components (dominance and epistasis) of total genetic merit. However, for applications 
in MAM, the objective is to predict phenotypes; consequently, the DNA test should 
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predict total genetic merit (including the non-additive as well as additive components). 
Therefore, the way in which DNA test results are computed should be different between 
MAS and MAM. 

The term molecular breeding value is specific to the application of DNA testing to 
selection. The corresponding term which is more appropriate for MAM is molecular 
genetic value (MGV), which is a continuous value, intended to predict the total genetic 
merit of animals based only on the DNA test results. As for MBV, MGV would ideally be 
expressed in the units of the trait they are intended to predict. The proportion of 
variation that is relevant in MAM is the proportion of phenotypic variation that is 
accounted for by the MGV. 

The second fundamental difference between MAS and MAM is that, in MAS, 
pedigree and breed composition are typically known. Consequently, it is often feasible 
to statistically partition the additive genetic from the residual components of phenotype. 
(The residual consists of the non-additive genetic and non-genetic components of the 
phenotype, which are usually assumed to be confounded with one another. Pedigree 
structures are typically not adequate to effectively partition these two components.) A 
prerequisite for a population to be suitable for estimation of the proportion of additive 
genetic variance due to an MBV is that its pedigree be adequate to partition the additive 
genetic from the residual components. 

However, for application in MAM, pedigree and breed composition are often 
unknown. Fortunately, there is no need to partition the additive genetic component from 
the remainder of phenotype for MAM. 

Objectives and Intended Audience 
This paper is more technical than is typical for BIF proceedings. It is not intended 

for the entire audience of the BIF convention. It is included here because its 
development occurred after the last Genetic Prediction Workshop (GPW) and it 
provides the basis for standardizing statistical procedures necessary to implement 
recommendations made at the last GPW (Moser, 2008) regarding how independent 
evaluations of DNA tests should be conducted and reported.  

It is intended that these new statistics will enhance (in the shorter term) and 
eventually replace (in the longer term) the "validation" component (Van Eenennaam et 
al., 2007) of the National Beef Cattle Evaluation Consortium's (NBCEC's) third party 
evaluation of DNA tests. This process is in transition towards greater emphasis on 
estimation of the (co)variances required to incorporate DNA tests into NCE and 
providing information that is more useful to customers of the technology. As such, the 
primary objective of this paper is to characterize statistics that will improve the ability of 
cattle producers to make informed decisions regarding the purchase of DNA tests for 
MAS and MAM. A secondary objective is to discuss practical considerations in the 
application of these statistics, specifically in the NBCEC third party evaluation of DNA 
tests as described by Van Eenennaam et al. (2009). The first example of results 
reported in this way is at http://www.beefcrc.com.au/Aus-Beef-DNA-results (accessed 
4/15/09). Consequently, this paper is intended to serve as reference material for 
recommendations in the BIF Guidelines. 



Proceedings of the Beef Improvement Federation 41st Annual Research Symposium 
April 30 – May 3, 2009, Sacramento, California, USA 

 

187 
 

Notation 
The MBV and MGV will be referred to collectively as molecular values (MV). We 

will use MBV to refer to an MV that is intended to be used in MAS. Our position is that 
MBV should include only additive genetic effects (have heritability close to one). 
Nonetheless, only for the purposes of this paper, we admit the possibility that MBV 
could be contaminated with non-additive genetic components solely for the purpose of 
evaluating their effects on the various estimators to be considered. Similarly, we will use 
MGV to refer to an MV that is intended to be used in MAM, regardless of whether it 
includes non-additive genetic effects or not. 

We will derive estimators of proportions of variance from a two-trait animal model 
with the MV and observed phenotype included as correlated traits. The models for 
observed and MV traits will each include an animal effect (with variance structure 
proportional to the numerator relationship matrix), appropriate fixed effects, and a 
residual (with variance proportional to the identity matrix). 

This approach is readily extended to models with multiple observed traits and 
multiple MV traits. In practice the method should be applied to models with multiple 
traits of both types. The use of a two-trait model here is for notational simplicity only. 

The two-trait model is represented as: 

⎣⎢
⎡

⎦⎥
⎤y

m  = ⎣⎢
⎡

⎦⎥
⎤Xy  0

0  Xm ⎣
⎢
⎡

⎦
⎥
⎤βy

βm
 + ⎣⎢

⎡
⎦⎥
⎤Zy  0

0  Zm ⎣⎢
⎡

⎦⎥
⎤uy

um
 + ⎣⎢

⎡
⎦⎥
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em
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⎥⎤
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⎟
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⎥⎤

0
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,  

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤σ2

gyA σgymA 0 0
σgymA σ2

gmA 0 0
0 0 σ2

ryI σrymI
0 0 σrymI σ2

rmI

   

where: 
y = a vector of phenotypes for the observed trait, 
m = a vector of MV, 
βy = fixed effects appropriate to y, 
βm = fixed effects appropriate to m,  
uy, um = additive genetic components of y and m, respectively, 
ey, em = residuals of y and m, respectively, 
Xy, Xm, Zy, Zm are design matrices relating βy, βm, uy, and um to their respective 

observations, 
A = the numerator relationship matrix, 
σ2

gy = additive genetic variance of y, 
σgym = additive genetic covariance between m and y, 
σ2

gm = additive genetic variance of m, 
σ2

ry = residual variance of y, 
σrym = residual covariance between m and y, 
σ2

rm = residual variance of m. 
Additionally, 

σ2
gy|gm = additive genetic variance of y, conditional on the additive genetic effect 

of m.  
σ2

gy − σ2
gy|gm = additive genetic variance of y that is accounted for by m. 
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Rg
2 = 

σ2
gy − σ2

gy|gm

σ2
gy

 = proportion of additive genetic variance accounted for by 

additive genetic effect of m. 
σ2

py = σ2
gy + σ2

ry = phenotypic variance of y, 
σpym = σgym + σrym = phenotypic covariance between m and y, 
σ2

pm = σ2
gm + σ2

rm = phenotypic variance of m, 

rg = 
σgym

 σgyσgm
  = additive genetic correlation between m and y, 

rp = 
σpym

 σpyσpm
  = phenotypic correlation between m and y, 

h2
gy = σ2

gy/σ
2

py = the narrow sense heritability of y, 
h2

gm = σ2
gm/σ2

pm = the narrow sense heritability of m, 
h2

tm = (σ2
gm + σ2

nam)/σ2
pm = the broad sense heritability of m. 

The above equations represent the additive model.  Notation incorporating non-additive 
variation includes  

σ2
nam = the non-additive genetic variance of m, 

σnaym = the non-additive genetic covariance between m and y, 
σ2

nay = the non-additive genetic variance of y, 
σ2

nay|nam = non-additive genetic variance of y, conditional on the non-additive 
genetic effect of m, 

σ2
ty = σ2

gy + σ2
nay = total genetic variance of y, 

σtym = σgym +σnaym = total genetic covariance between m and y, 
σ2

tm = σ2
gm + σ2

nam = total genetic variance of m, 
σ2

ty|tm = total genetic variance of y, conditional on the additive genetic effect of m.  
σ2

ty − σ2
ty|tm = total genetic variance of y that is accounted for by m. 

Rp
2 = 

σ2
ty − σ2

ty|tm
σ2

py
  = proportion of phenotypic variance accounted for by total 

genetic effects of m. 
Analyses used for the independent validation of DNA tests have typically been 

conducted using a single trait sire model for the target trait in which the MV is included 
as a covariate. For one of the estimators to be considered, it is also useful to use a 
reduced model in which the MV covariate is dropped from the full model. These models 
can be represented as: 

y = Xyβy + mb + Zss1 + e1 (full) 
y = Xyβy + Zss0 + e0 (reduced) 

⎣⎢
⎡

⎦⎥
⎤s1

e1
 ~ 

⎝
⎜
⎛

⎠
⎟
⎞

⎣⎢
⎡
⎦⎥
⎤0

0 ,  
⎣
⎢
⎡

⎦
⎥
⎤σ2

s1As  0
0  σ2

r1I
   

⎣⎢
⎡

⎦⎥
⎤s0

e0
 ~ 

⎝
⎜
⎛

⎠
⎟
⎞

⎣⎢
⎡
⎦⎥
⎤0

0 ,  
⎣
⎢
⎡

⎦
⎥
⎤σ2

s0As  0
0  σ2

r0I
   

where: 
s1, s0 = random sire effects in the full or reduced models, respectively, 
e1, e0 = residuals of y in the full or reduced models, respectively, 
Zs is a design matrix relating sires to observations, 
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As = the numerator relationship matrix of the sires, 
σ2

s1, σ
2

s0 = sire variance in the full or reduced models, respectively, 
σ2

r1, σ
2

r0 = residual variance of y in the full or reduced models, respectively, 

Estimators 
Multiple trait model for MAS 

An estimator based on the multiple trait model is derived as follows: by the 

definition of conditional variance, σ2
gy|gm = σ2

gy − 
(σgym)2

σ2
gm

  and therefore, 

RgMT
2 = 

σ2
gy − σ2

gy|gm

σ2
gy

  = 
σ2

gy − 
⎝
⎜
⎛

⎠
⎟
⎞

σ2
gy − 

(σgym)2

σ2
gm

 

σ2
gy

  = 
(σgym)2

σ2
gyσ

2
gm

  = (rg)2 

R̂gMT
2 = 

(σ̂gym)2

 σ̂2
gyσ̂

2
gm

  = ( r̂g)2 

and R̂gMT
2 = ( r̂g)2 is an estimator of the proportion of additive genetic variance accounted 

for by the MBV. This is simply the square of the additive genetic correlation between the 
observed and MBV traits.  

If the (co)variances are estimated by REML, then the squared genetic correlation 
will be a REML estimate of the proportion of variation. Therefore, it has the desirable 
property that the estimate will be within the parameter space (between 0 and 1). 

This estimator has been used for the analysis of real data in Australia 
(http://www.beefcrc.com.au/Aus-Beef-DNA-results, accessed 4/15/09). 
 The delta method (Oehlert, 1992) can then be used to obtain an approximate 
standard error of the squared genetic correlation by multiplying the standard error of the 
genetic correlation by the absolute value of the partial derivative of ( r̂g)2 with respect to 
r̂g. The approximate standard error of R̂gMT

2 is obtained by multiplying the standard error 
of rg by 2| r̂g |. Using Appendix 1, 

Var[( r̂g)2] ≅ 4( r̂g)2 Var[ r̂g] 

se[R̂gMT
2] = se[( r̂g)2] ≅ 2| r̂g| se[ r̂g] 

The se(Rg
2) has the same statistical properties as other functions (correlations and 

heritabilities) of the estimated (co)variance parameters. 
If it is assumed that the MV is a true MBV, based on a purely additive genetic 

model, then the narrow sense heritability of that MBV should be very high and the 
residual variance may be due only to laboratory (including missing genotypes), 
pedigree, sample identification and/or other independent errors. Thus, these small 
residuals should be uncorrelated with the residuals of the phenotypes. Therefore, it 
would be reasonable to fix the residual covariance to zero, and hence, reduce the 
number of parameters to be estimated by one. However, if the MV presented as an 
MBV includes non-additive genetic components (or if some residual variation was due 
to pedigree errors), this could induce a residual covariance and it may be best to 
estimate that covariance. Thus, there are two slightly different variations of the R̂gMT

2 
estimator that are reasonable to consider using. 
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Reduction in Sire Variance for MAS 
The single trait sire model has typically been used in independent validations of 

DNA tests reported as MBV. An ad hoc estimator of the proportion of additive genetic 
variation due to the MBV that has been used in some cases is the reduction in sire 
variance (RV). It is based on the rationale that the reduction in the sire variance when 
the MBV is included in the model is equivalent to the variation accounted for by the 
MBV. Thus,  

R̂gRV
2 = 

4σ̂2
s0 − 4σ̂2

s1

4σ̂2
s0

  = 
σ̂2

s0 − σ̂2
s1

σ̂2
s0

  

because four times both the numerator and the denominator reflects the proportional 
reduction in additive genetic variation. This rationale should be valid whether the MV 
contains a non-additive genetic component or not. 

Regression of Phenotype on MBV for MAS 
An alternative estimator of the proportion of additive genetic variation due to the 

MBV, based on the regression of phenotype on MBV (RPM) in the full single-trait model 
used in independent validations can be derived. Although this model may be fit as a sire 
model, the notation is simpler if we reparameterize it in terms of the additive genetic 
variance, σ2

gy = 4σ2
s1, and other similar parameters defined for the multiple trait animal 

model. 

By the definition of regression, b = 
σpym

σ2
pm

. Thus,  

b = 
σpym

σ2
pm

 = 
σgym + σrym + σgyrm + σrygm

σ2
pm

  = 
σgym + σrym

(σ2
gm + σ2

nam)/h2
tm

 

because σgyrm, the covariance between uy and em, and σrygm, the covariance between ey 
and um, are both assumed to be zero as is standard in animal breeding models, even if 
the MBV contains some non-additive genetic effects.  

In this model, b/h2
tm essentially serves as a scaling factor, translating units of the 

observed trait to units of the MBV. It can be argued that this scaling factor should apply 
equally to the additive and non-additive genetic components of any MV. Thus, 

b
h2

tm
  = 

σgym + σnaym

σ2
gm + σ2

nam
 = 

σgym

 σ2
gm

 = 
σnaym

 σ2
nam

 

σgym = 
σ2

gm b
h2

tm
. 

This estimator makes use of the additive variance, conditional on the additive genetic 
effect of the MBV, σ2

gy|gm. The additive genetic variance of the observed trait that is 
accounted for by the MBV is σ2

gy − σ2
 gy|gm. Therefore, the proportion of additive genetic 

variance accounted for by the MBV is 

RgRPM
2 = 

σ2
gy − σ2

gy|gm

σ2
gy

  = 
σ2

gy − 
⎝
⎜
⎛

⎠
⎟
⎞

σ2
gy − 

(σgym)2

 σ2
gm

 

σ2
gy

 = 
(σgym)2

σ2
gyσ

2
gm

  = 
(σ2

gm b)2

σ2
gyσ

2
gm (h2

tm)2  

RgRPM
2 = 

b2 σ2
gm

σ2
gy (h

2
tm)2  
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Therefore, R̂gRPM
2 = 

b̂2 σ̂2
gm

σ̂2
gy (ĥ

 2
tm)2

  is an estimator of the proportion of additive 

genetic variance accounted for by an MBV, without an assumption of additivity of the 
MBV. However, it does require an estimate of the broad sense heritability of the MBV. In 
most cases, this will be impractical to estimate. Therefore, an assumption will be 
required.  

Broad sense heritability of an MBV should differ from one only due to pedigree, 
sample identification, or laboratory (including missing genotypes) errors. If these are 
assumed to be minimal, then it could be reasonable to approximate h2

tm ≅ 1, in which 

case R̂gRPM
2 ≅ 

b̂2 σ̂2
gm

σ̂2
gy

 is an estimator in which the approximation introduces a slight 

downward bias. 
Alternatively, if the MBV is strictly additive, then the non-additive genetic variance 

of the MBV, σ2
nam, is equal to zero and consequently h2

tm = h2
gm. Therefore, the 

estimator simplifies to R̂gRPM
2 ≅ 

b̂2 σ̂2
pm

σ̂2
gy ĥ

2
gm

 , under this approximation, which introduces an 

upward bias if the MV presented as an MBV actually contains a non-additive genetic 
component. 

If the MBV are computed using a strictly additive model, then ĥ2
gm should be very 

close to one, which implies that σ̂2
gm will also be very close to σ̂2

pm. Therefore, in many 
practical cases, these approximations may be inconsequential. In any of the versions of 
this estimator, b̂ and σ̂2

gy are obtained from the full single trait model whereas ĥ2
gm, σ̂2

pm, 
and/or σ̂2

gm must be obtained from a separate single trait analysis of the MBV. 

Multiple trait model for MAM 
An estimator of the proportion of phenotypic variance accounted for by the MV 

based on the multiple trait model is derived as follows: Because the phenotypic 
covariance, σpym, should be due only to genetic effects, it should be equal to the total 
genetic covariance, σtym (σpym = σtym). By the definition of conditional variance, σ2

ty|tm = σ2
ty 

− 
(σtym)2

σ2
tm

  and therefore, 

RpMT
2 = 

σ2
ty − σ2

ty|tm
σ2

py
  = 

σ2
ty − 

⎝
⎜
⎛

⎠
⎟
⎞

σ2
ty − 

(σtym)2

σ2
tm

 

σ2
py

  = 
(σtym)2

σ2
pyσ

2
tm

 = 
(σpym)2

σ2
pyσ

2
pmh2

tm
 = (rp)2

h2
tm

. 

and R̂pMT
2 = ( r̂p)2/ĥ2

tm is an estimator of the proportion of phenotypic variance accounted 
for by the MV. This is the square of phenotypic correlation between the observed and 
MV traits, divided by the broad sense heritability. In general, the broad sense heritability 
will not be feasible to estimate. However, it should be only slightly less than one, the 
difference being due to laboratory errors, missing genotypes, or sample identification 
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errors. Therefore, the practical solution appears to be to assume that h2
tm = 1, in which 

case, R̂pMT
2 ≅ ( r̂p)2.  

 The approximate standard error of R̂p
2 is obtained as:  

se[R̂pMT
2] = se[( r̂p)2] = 2| r̂p| se[ r̂p] 

by substituting r̂p for r̂g in the derivation of se[R̂gMT
2]. 

Because this approach does not require partitioning the genetic from non-genetic 
effects, it could also be applied in models that do not contain genetic effects. However, 
because the residual covariance is a potentially important component of the phenotypic 
correlation, it should always be estimated in models being run for the estimation of 
R̂pMT

2. 

Reduction in Variance for MAM 
An ad hoc estimator of the proportion of phenotypic variation due to the MV can 

be developed from full and reduced single trait models analogous to the R̂gRV
2 estimator 

for MAS. It is based on the rationale that the reduction in the phenotypic variance when 
the MV is included in the model is equivalent to the total genetic variation accounted for 
by the MV. Thus,  

R̂pRV
2 = 

(σ̂2
s0 + σ̂2

r0) − (σ̂2
s1 + σ̂2

r1)
(σ̂2

s0 + σ̂2
r0)

. 

This general approach could also be applied in models that do not contain sire, animal, 
or other genetic effects in the model. 

Regression of Phenotype on MV for MAM 
An estimator of the proportion of phenotypic variation due to the MV, analogous to the R̂
gRPM

2 estimator defined above can be derived. The phenotypic variance of the observed 
trait that is accounted for by the MV is σ2

py − σ2
py|pm. The variance of phenotypes in the 

full model, conditional on the MV is σ2
py|pm = σ2

py − 
(σpym)2

σ2
pm

 . By the definition of 

regression, b = 
σpym

σ2
pm

, where σpym is the phenotypic covariance between y and m in the 

full single trait model. Thus,  

RpRPM
2 = 

σ2
py − σ2

py|pm

 σ2
py

  = 
σ2

py − 
⎝
⎜
⎛

⎠
⎟
⎞

σ2
py − 

(σpym)2

 σ2
pm

 

σ2
py

 = 
(σpym)2

σ2
pyσ

2
pm

  = 
b2 σ2

pm

σ2
py

  

Therefore, R̂pRPM
2 = 

b̂2 σ̂2
pm

σ̂2
py

 is an estimator of the proportion of phenotypic genetic 

variance accounted for by an MV. This estimator requires relatively few assumptions 
although it does require an estimate of the phenotypic variance of MV from a separate 
analysis. 
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Estimation of Regression Coefficient with Single Trait Model 
The regression of the phenotype on the MV is essentially a scaling factor that 

converts the units of the observed trait into units of the MV. Ideally, it would be equal to 
one, but it has been found typically to be less than one for commercial DNA tests. In the 
full single trait analysis, this regression is estimated directly in the analysis, along with 
its standard error. We will refer to it as b̂ST. Previous NBCEC validations of MBV 
(http://www.nbcec.org/) have been primarily based on checking for evidence that b̂ST is 
significantly greater than zero. 

Estimation of Regression Coefficient with Multiple Trait Model 
In the multiple trait analysis, the regression of the phenotype on the MV is not 

estimated directly in the analysis, but can be estimated by σ̂pym/σ̂2
pm. If the residual 

covariance was estimated, we will refer to it as b̂MTe = σ̂pym/σ̂2
pm. In the event that the 

analysis is for MAS and the residual covariance was set to zero, we will refer to it as 
b̂MT0 = σ̂pym/σ̂2

pm = σ̂gym/σ̂2
pm as was used at http://www.beefcrc.com.au/Aus-Beef-DNA-

results (accessed 4/15/09). In either case, it seems useful to compare these estimators 
with the direct estimator from the single trait model. 
 The approximate standard errors of b̂MTe and b̂MTe were computed as 

se[b̂MTe] ≅ 
⎝
⎜
⎛

⎠
⎟
⎞σ̂pym

σ̂2
pm

 
⎝
⎜
⎛

⎠
⎟
⎞Var(σ̂pym)

σ̂pym

  + 
Var(σ̂2

pm)
σ̂2

pm

  − 2 
Cov(σ̂pym,σ̂2

pm)
 σ̂pym σ̂2

pm

 
1/2

 

se[b̂MT0] ≅ 
⎝
⎜
⎛

⎠
⎟
⎞σ̂gym

σ̂2
pm

 
⎝
⎜
⎛

⎠
⎟
⎞Var(σ̂gym)

σ̂gym

  + 
Var(σ̂2

pm)
σ̂2

pm

  − 2 
Cov(σ̂gym,σ̂2

pm)
 σ̂gym σ̂2

pm

 
1/2

 

 which can be confirmed using Appendix 1. 

Materials and Methods 
For each of three levels of h2

gy (0.1, 0.3, and 0.5) and four levels of Rg
2 (0.04, 

0.16, 0.36, and 0.64), 500 independent replicates were simulated. Each replicate 
consisted of 100 unrelated sires with 10 offspring each from unrelated dams. Each of 
the progeny was randomly assigned to one of 20 contemporary groups. The 
phenotypes for the replicates with only additive effects were generated as the sum of a 
contemporary group effect, a sire effect, an additive genetic component of the residual, 
and an environmental component of the residual. The sire effects for the phenotypes 
and MV were generated as bivariate normal random variables each with mean zero, 
variance of 0.25 × h2

gy, and correlation equal to the genetic correlation (rg = Rg
2 ). The 

genetic component of the residuals was generated in the same way except with a 
variance of .75 × h2

gy and correlation equal to Rg
2. The environmental component of 

the phenotype's residual was generated as a normal random variable with mean zero 
and variance of 1 − h2

gy. The residual was then the sum of the genetic and 
environmental components. The resulting observed trait phenotype has phenotypic 
variance of 1. The MV were the sum of the sire effect on the MV (with variance = 0.25 × 
h2

gy) and the genetic component of the residuals for the MV (with a variance of .75 × 
h2

gy). Thus, the MV had a variance equal to the observed trait heritability (h2
gy) and did 
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not include an error effect (h2
gm = h2

tm = 1). Because all the estimators were translation 
invariant, the contemporary group effects were all set to zero. Therefore, σgym = h2

gy rg 
and the additive genetic variance accounted for by m, was 

σ2
gy − σ2

gy|gm = 
(σgym)2

σ2
gm

  = 
(h2

gy rg)2

 h2
gy

  = h2
gy rg

2 

and the regression of y on m is  

b = 
σpym

σ2
pm

  = 
σgym

σ2
gm

  = 
h2

gy rg
 h2

gy
  = rg. 

The last two expressions are specific to the way in which these data were simulated; 
they are not true in general.  

For each of the same twelve combinations of h2
gy and Rg

2, an additional 500 
replicates with non-additive genetic effects were generated in such a way that h2

gm was 
equal to 0.8. An additional component representing non-additive genetic effects was 
simulated as a bivariate normal random variable. To achieve h2

gm = 0.8, the values of 
σ2

nam and σ2
nay were set to 0.25 x h2

gy, with the correlation between the non-additive 
contributions to y and m equal to rg. In these replicates, the environmental component 
of the phenotype's residual was generated as a normal random variable with mean zero 
and variance of 1 − h2

gy − 0.25 h2
gy, so that σ2

py was still equal to 1. The broad sense 
heritability of MV, h2

tm was equal to 1 in all replicates. Therefore, σnaym = 0.25 h2
gy rg and 

the non-additive genetic variance accounted for by m, was 

σ2
nay − σ2

nay|nam = 
(σnaym)2

σ2
nam

  = 
(0.25 h2

gy rg)2

 0.25 h2
gy

  = 0.25 h2
gy rg

2. 

Consequently, the non-additive genetic variation accounted for in these replicates was 
25% of the additive genetic variation accounted for in them. The regression of y on m is  

b = 
σpym

σ2
pm

  = 
σgym + σnaym

σ2
gm + σ2

nam
  = 

h2
gy rg + 0.25 h2

gy rg
 h2

gy + 0.25 h2
gy

  = rg. 

The last two expressions are specific to the way in which these data were simulated; 
they are not true in general.  

The single trait analyses were conducted using PROC Mixed of SAS1 with an 
option that allows negative estimates of variances. Those estimates that fell within the 
parameter space were REML estimates and those that fell outside the parameter space 
are not REML. The two-trait analyses were conducted using ASReml1. Those 
parameters were within the parameter space with the exception of some numerical 
problems when the additive variance was on the boundary at zero in a preliminary 
analysis. The two-trait model was run for each replicate both with the residual 
correlations estimated and with them set to zero. 

Results 
Comparisons of the three alternative estimators for application in MAS are 

presented in Table 1. When simulated under an additive-only model, across the range 

                                            
1 Reference herein to any specific commercial products by trade name, trademark, manufacturer, or 

otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government. The views and opinions of authors expressed herein do not necessarily state or reflect those of 
the United States Government, and shall not be used for advertising or product endorsement purposes. 
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of parameter sets considered, the mean of R̂gMT
2 tended to be closer to the simulated 

values than R̂gRV
2 and R̂gRPM

2, although all three estimators performed reasonably for 
most parameter sets.  

The most troublesome estimates were R̂gRV
2 and R̂gRPM

2 at h2
gy = 0.1. For Rg

2 = 
0.36, two extreme outlier replicates for RV and one for RPM caused the means of 500 
replicates to be R̂gRV

2 = 1.397 and R̂gRPM
2 = 6.615. With these extreme replicates 

removed, the means of the remaining replicates were 0.194 and 0.419 with standard 
deviations of 6.614 and 5.176, respectively. The means of R̂gMT

2 with and without the 
residual constrained to zero, respectively, over the same replicates were 0.441 and 
0.380 with standard deviations of 0.229 and 0.273. For Rg

2 = 0.64 (h2
gy = 0.1), outlier 

replicates also caused unreasonable means and huge standard deviations of estimates 
for both R̂gRV

2 and R̂gRPM
2. These outliers were caused by estimates of the sire variance 

(which is in the denominator of these estimators) that were very close to zero. Estimates 
of sire variance close to zero were uniformly distributed across the levels of Rg

2 and 
were primarily due to low heritability. It was a matter of chance that out of 2,000 
replicates with h2

gy = 0.1, the most extreme (closest to zero) were at Rg
2 = 0.36 and next 

most extreme were at Rg
2 = 0.64. 

However, R̂gMT
2 tended to be biased up when the simulated value of Rg

2 was 
close to zero, relative to the mean standard error. This was particularly noticeable at low 
heritability, whether non-additive effects were simulated or not and whether the residual 
covariance was estimated or set to zero. At h2

gy = 0.1 and Rg
2 = 0.64, R̂gMT

2 was 
seriously underestimated (regardless of whether non-additive effects were simulated 
(0.505) or not (0.536), but only when the residual covariance was estimated. 

When non-additive genetic effects were simulated, the mean of R̂gRPM
2 was 

considerably higher than the other estimators, especially for h2
gy ≥ 0.3. This was 

expected because the derivation of this estimator is highly dependent on the 
assumption, implicit in the definition of an MBV, that it is strictly additive. 

Excluding the combinations with h2
gy = 0.1 (for which the means were too erratic 

and the standard deviations far too high to draw any conclusions), R̂gRV
2 showed no 

signs of bias, even when non-additive genetic effects were included in the simulation. 
The root mean squared errors (RMSE) of R̂gMT

2 were almost uniformly smaller 

than R̂gRV
2 and R̂gRPM

2; the only two notable exceptions were at Rg
2 = 0.04 with the 

residual covariance estimated and only R̂gRPM
2 performed better than R̂gMT

2. At h2
gy = 0.1, 

RMSE of R̂gMT
2 were higher than desired, but reasonable, whereas RMSE of  R̂gRV

2 and 

R̂gRPM
2 suggested those estimators were useless. 

The R̂gRV
2 estimator can produce negative estimates and both R̂gRV

2 and R̂gRPM
2 

can produce estimates > 1 of the proportion of additive variance explained. Examples of 
each of these types of estimates outside the parameter space occurred. 
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The R̂gRPM
2 estimator appears mathematically constrained to be non-negative, yet 

it's mean for several parameter combinations were negative. This occurred due to 
negative estimates of sire variance. 

The approximate standard errors of R̂gMT
2 that were computed as described 

above were generally very close to the standard deviations of the estimates. They 
certainly are close enough to serve as guides as to whether a data set is sufficient to 
estimate the proportion of variation reasonably well. The few exceptions in which the 
approximate standard error was considerably higher than the realized standard 
deviation and root mean squared error were those parameter sets for which the 
standard deviations of estimates were high, indicating that larger populations are 
required for reliable estimates. 

When non-additive genetic effects were not simulated, the standard deviations 
and root mean squared errors of R̂gMT

2 were uniformly smaller when the residual 
covariance was fixed at zero than when it was estimated. This was expected because 
there was one less parameter to be estimated and that parameter was set to the value 
used in the simulation. The mean estimates were similar whether σrym was estimated or 
set to zero and, therefore, RMSE generally favored setting σrym = 0. This was especially 
pronounced at Rg

2 = 0.04, where RMSE was up to twice as high if the residual 
covariance was estimated as when it was fixed at zero. 

When non-additive genetic effects were simulated, the standard deviations of 
R̂gMT

2 were also uniformly smaller when the residual covariance was fixed at zero than 
when it was estimated. However, for all but one parameter combination (h2

gy = 0.1; Rg
2 

= 0.04), the mean estimate was higher when the residual covariance was set to zero. 
For all but two parameter combinations, the mean estimate was closer to the simulated 
value when σrym was estimated. The notable exception was (h2

gy = 0.1; Rg
2 = 0.64) in 

which case the estimate based on σrym = 0 was biased down considerably; however, the 
mean standard error of these estimates was quite high, suggesting that the population 
size was inadequate for this parameter combination. In all cases with h2

gy ≥ 0.3 and Rg
2 

≥ 0.16, setting σrym = 0 seemed to introduce an upward bias, in some cases quite large. 
Nonetheless, root mean squared error generally favored σrym = 0. 

Table 2 presents comparisons of the three alternative estimators for application 
in MAM. In general, RMSE were considerably smaller for R̂pMT

2, R̂pRV
2, and R̂pRPM

2 than 

for R̂gMT
2, R̂gRV

2, and R̂gRPM
2. This was expected because the former estimators are not 

highly dependent on partitioning variation into additive genetic and residual components 
as are the latter. Furthermore, the denominator of each of these estimators contains the 
phenotypic variance, and therefore, is essentially assured of being substantially 
positive. 

There was essentially no difference between the performance of R̂pMT
2, R̂pRV

2, and 

R̂pRPM
2. All of them performed very well. 

A comparison of the two methods of estimating the regression of phenotype on 
MV is presented in Table 3. There was essentially no difference between b̂MTe, b̂MT0, and 
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b̂ST. There was no indication of substantial bias and the RMSE were very similar. The 
sole minor exception was at (h2

gy = 0.1; Rg
2 = 0.64) in which case b̂MTe, and especially 

b̂MT0, were underestimated slightly and had slightly greater standard deviations and 

RMSE than b̂ST. 
The approximate standard errors of all three estimators were very similar to the 

standard deviations of the estimates, except for a tendency for b̂MTe and b̂MT0 to be 
underestimated at h2

gy = 0.1. 
As a practical matter, any of the three estimators perform very well. The only 

concern with any of them is that hypothesis tests of b̂MTe and b̂MT0 could be biased 
slightly toward significance for traits with low heritability. 

Discussion 
For some parameter combinations all of the estimators performed roughly 

similarly and acceptably well. However, for some parameter combinations (especially 
those involving low heritability and low proportion of genetic variation explained), the 
estimators based on RV and RPM produced some very erratic estimates. This problem 
is likely to become more pronounced in smaller data sets. 

Furthermore, the RV estimators can produce negative estimates and the RV and 
RPM estimators can produce estimates > 1 of the proportion of variance explained. 
Provided REML is used to estimate the (co)variance parameters, the R̂gMT

2 and R̂pMT
2 

estimators have the statistical properties of REML estimators, including the advantage 
of producing estimates within the parameter space. One of these desirable properties is 
that REML is a consistent estimator: as the sampling variance of the estimator 
diminishes (generally by increasing the sample size), the bias in the estimate also 
diminishes. 

The data sets that are typically available for validation of DNA tests are far from 
ideal for partitioning additive from residual components of variation. Consequently, 
estimates of the proportion of additive genetic variation explained by MBV may have 
quite large standard errors. Therefore, these standard errors (or confidence intervals) 
should be computed and reported whenever the proportion of variation is reported. An 
additional advantage of the R̂gMT

2 and R̂pMT
2 estimators is that their standard errors can 

be readily computed. This is not feasible for the RV and RPM estimators because they 
are computed from different analyses of the same data. 

It is often desirable to include contemporaries that have phenotypes, but no MV 
in an analysis to improve the estimation of contemporary group effects and the 
partitioning between additive and residual variation. But, because the RV and RPM 
estimators are fundamentally based on a single trait model that includes the MV as an 
independent variable, they inherently restrict the animals that can be included to those 
with both phenotype and MV. There is no such restriction in the multiple trait model; 
animals with either phenotype only or MV only can be handled just as easily as those 
with both phenotype and MV. Furthermore, the multiple trait approach can be readily 
extended to simultaneously handle the effects of multiple MV on an observed trait. It 
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can also handle the effects of an MV on multiple observed traits, accounting for the 
correlations among those traits. 

Additionally, R̂gMT
2 and R̂pMT

2 have the intuitive appeal that they represent 
proportions of variation (similar to the common R2 in statistics) and they are the squares 
of intuitively relevant correlations. 

Considering all these factors and the general availability of multiple trait software 
that can compute standard errors of (co)variance parameters, it seems reasonable to 
recommend that estimation of proportions of variation be done with the R̂gMT

2 and R̂pMT
2 

estimators. Because there seems to be little justification for using other estimators, the 
remainder of the paper assumes that the R̂gMT

2 and R̂pMT
2 estimators will be used. 

Practical Considerations in Application 
In computing R̂gMT

2 and R̂pMT
2 estimators for MAS, we must evaluate both cases 

in which the MV is assumed to be completely additive (our definition of a true MBV) and 
cases in which the MV presented as an MBV includes non-additive components. For 
tests intended for use in MAS, it could be useful to evaluate R̂pMT

2 in addition to R̂gMT
2, 

because R̂pMT
2 can be estimated more accurately and R̂pMT

2/ h2
gy provides an estimate of 

the upper limit of RgMT
2. However, R̂gMT

2, is not relevant for evaluating MGV that aim to 
account for non-additive genetics and breed effects for application to MAM. 

For applications in MAS, there are advantages to setting the residual correlation 
to zero, but only if it is certain that the MBV are computed using a strictly additive 
model. Otherwise, the residual correlation should be estimated. For applications in 
MAM, the residual correlation should always be estimated. 

If ĥ2
gm is very close to 1, then σ̂2

rm must be very small, and consequently, |σ̂rym | 
must also be small. Therefore, it seems unlikely that whether σ̂rym is estimated or not 
could have much effect on r̂g under this condition, even though the residual correlation 
could vary considerably. However, the accuracy of estimating r̂g was affected by 
whether σ̂rym was estimated or not. Therefore, it seems likely that this difference was 
due primarily to those (less frequent) replicates in which h2

gm was underestimated 
considerably and that, in those replicates, the effect of estimating the residual 
correlation or not may be considerably larger than is reflected in Table 1. This should be 
explored more fully. 

If ĥ2
gm is significantly less than 1, then its estimated value should be used for the 

multiple trait analysis. It is not completely clear what the best approach is if ĥ2
gm is 

substantially, but not significantly less than 1. The default position would seem to be 
that σ̂2

rm should be estimated unless it is close enough to the boundary value of zero 

(ĥ2
gm = 1) to cause numerical problems. However, it could be argued that the natural 

value of h2
gm is just slightly less than one, and therefore, σ̂2

rm should be set to a value 

slightly greater than zero unless ĥ2
gm is significantly less than one. 
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Therefore, it is reasonable to ask not only whether the residual covariance should 
be estimated or set equal to zero, but also whether σ̂2

rm should be estimated or set to a 
small positive value (regardless of whether the estimate hits a parameter space 
boundary or not). It appears that the latter question may be more important than the 
first, but this requires further investigation. To some extent, the answers to both of these 
questions depend on how much information the DNA testing companies are willing to 
provide regarding how their MV are constructed. 

It is possible that the estimate of the genetic correlation could be negative, in 
which case the squared correlation would be exactly the same as if the estimate had 
been the absolute value of the observed correlation. Although this is theoretically 
correct, the MV are claimed to be in the same direction as the observed trait (allowing 
one-tailed tests to be applied). Therefore, if the estimated genetic correlation is 
negative, the estimate of the proportion of genetic variation explained should be 
considered to be 0 or undefined and the MV should not be included in NCE. We 
recommend that such results should be reported as * and footnoted to indicate that the 
estimate is undefined because the genetic correlation was in the direction opposite to 
the claim. 

However, if a trait for which no claim exists is included in the analysis, then it may 
be perfectly appropriate to square a negative genetic correlation, just as it would be 
appropriate, in that case, to apply a two-tailed hypothesis test. An example of such a 
circumstance could be an MBV for marbling being analyzed along with phenotypes for 
marbling and growth with the DNA testing company’s claim being only for marbling. 
Then, the proportion of variation for growth would be the square of the genetic 
correlation, whether negative or positive, but for marbling, the proportion of variation 
would be undefined if that genetic correlation was negative.  

The standard error of R̂gMT
2 is at least partly a function of how well the additive 

genetic variances of both the observed trait and the MBV can be partitioned from the 
residual variances. This is likely to be highly dependent on the pedigree structure. It 
seems likely that multigeneration pedigrees analyzed with the full relationship matrix 
may be considerably more important for the purpose of estimating these (co)variances 
than they have been for the purpose of validating that a test "works". Specifically, it may 
be useful to have phenotypes and MBV on dam-offspring pairs, so that the dam side of 
the pedigree can contribute (in addition to the sire side) to partitioning the additive 
genetic component from the residual. For those traits for which phenotypes are plentiful 
(those included in NCE) it could be very efficient to run the DNA tests (and include the 
MBV) on large numbers of sires that have many progeny with phenotypes. 

Eventually, MBV for many seedstock animals (primarily without phenotypes for 
the target trait) should become available (this is a prerequisite to use the DNA tests in 
NCE). When this data becomes available, it may be helpful to include it in the analysis 
for the (co)variance estimation in order to better partition the additive from residual 
variance of MBV and to better estimate the residual covariance between MBV and 
observed traits. When this option becomes available, it seems likely that the advantages 
of making fewer assumptions regarding the MBV will outweigh the advantages of 
estimating fewer parameters that were discussed above. 

In general, relatively few fixed effects need be fit in the model for the MV in the 
multiple trait approach; in some cases only an overall mean may be sufficient. There 
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seems to be no reason to fit the contemporary group effects that are appropriate for the 
observed traits.  

For application in MAS, in general, it seems most appropriate that breed effects 
should be included in the statistical model for both the observed and MBV traits. Thus 
the (co)variance parameters estimated would be free of breed effects and, therefore, 
appropriate for within-breed selection. However, for tests that are optimized for selection 
in Bos indicus × B. taurus composites, it may be appropriate for the DNA tests to 
account for the breed effects, in which case, the (co)variance parameters should include 
them (the breed effects should be dropped from the model). This argument could be 
extended to include selection in B. taurus composites. It is not clear whether there are 
circumstances in which it would be appropriate to include breed effects in the model for 
observed traits, but not the MBV traits, or vice versa. It is an issue that requires study. 

The current NBCEC position is that (co)variance estimates for application in MAS 
should be obtained and reported with models that account for breed effects for both the 
observed and MBV traits and that knowledge of breed composition will remain an 
important attribute of populations that are appropriate for (co)variance parameter 
estimation. It would be reasonable for DNA testing companies to request the estimation 
and reporting of (co)variance parameters from other models as well, provided that 
footnotes explaining the different interpretation of those results are included in the 
report. Obviously, if companies wish to exercise this option, they need to specify that at 
the time the validation is requested. 

For application in MAM, it is less clear whether breed effects should be fit in the 
models for phenotypes and MGV. One of the opportunities in MAM is to use the 
markers' ability to estimate breed composition to enhance the prediction of total genetic 
merit. Omitting breed effects seems appropriate in analyses for the validation of tests 
intended to be used for MAM in mixed breed populations in which breed composition is 
unknown (a common situation in feedlot applications). However, if the intended 
application of DNA tests is MAM within populations that are uniform in breed 
composition, it will be more useful to evaluate the tests with models that include breed 
effects. Evaluating tests with both models that include and do not include breed effects 
may be useful in determining the extent to which the tests' predictive ability is derived 
from the estimation of breed composition. 

The single trait models were fit as sire models because that is the model that has 
typically been used in NBCEC's independent validations of DNA tests and those 
analyses have typically been conducted using software that does not easily incorporate 
the numerator relationship matrix. The multiple trait model was fit as an animal model 
because that is how analyses will likely be conducted in practice and it would be the 
most reasonable alternative if populations with more complicated pedigrees were 
encountered. For the simulated pedigree structure, the sire and animal models are 
equivalent, with one exception: in the animal model, the upper bound on narrow sense 
heritability is one, but with the sire model, the upper bound on heritability is four. This is 
a minor difference in computation of the estimators that is distinct from the fundamental 
properties of the estimators themselves, but it seems unlikely to have changed the 
results noticeably. Keeping the heritability within its natural parameter space is an 
advantage of the animal model. 
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Replicates in which σ̂2
gy was at or near zero (the boundary of the parameter 

space) gave very poor results for estimating Rg
2 with any of the estimators. Obviously, it 

is very difficult to estimate a proportion of something (additive genetic variance) that is 
very close to zero. Had the SAS option to allow negative variances been turned off, 
many of the estimates of sire variance would have been zero (which would have made 
R̂gRV

2 and R̂gRPM
2 undefined) or very close to zero (which makes R̂gRV

2 and R̂gRPM
2 

unreasonably large).  
This is not a problem that is unique to unusual replicates of simulated data. In 

real data, σ̂2
gy could be near zero either due to sampling variation in high quality data 

with reasonable heritability or because of data quality problems that cause the effective 
heritability of a data set to be low for a trait that typically is moderate or high in 
heritability. In either case, the data set will have limited value for estimating the 
proportion of additive variation and, if practical, should be replaced with another data set 
with higher estimated heritability. Caution should similarly be exercised if the heritability 
of MBV is lower than expected. 

In third party independent processes such as described by (Van Eenennaam et 
al., 2009), it is critical that data quality checks are conducted prior to estimation of Rg

2. If 
the sequence is reversed, the data quality checks are typically done only when the 
estimate of Rg

2 is disappointing; this obviously introduces bias into the estimates. 
Moreover, it unnecessarily creates situations in which decisions about whether or not to 
remove questionable data sets can not be made as objectively as would have otherwise 
been possible. To be implemented most effectively, the company presenting a test for 
validation would review summary statistics on data quality (of both observed traits and 
MBV) and agree to include the data set prior to the commencement of any estimation of 
Rg

2 or other analyses of association between the observed traits and MBV. 
The problem with σ̂2

gy being nearly zero obviously occurs much more frequently 
when the heritability is low and/or the standard error is too large because of population 
size and structure. Considerably larger populations will be required for traits with low 
heritability. 

For application in MAM, σ̂2
py hitting the boundary at zero (the denominator of 

R̂pMT
2 approaching zero) is unlikely to be experienced and cause numerical problems. 

However, issues with data quality will be just as important in MAM, but different 
diagnostic statistics will be required, depending on the nature of the data set.  

The REML estimates of Rg
2 were biased up when heritability of the observed trait 

and the genetic correlation were low. The obvious solution to this problem seems to be 
to add more data if standard errors are too high. However, it is likely that this solution 
will come in the form of more data sets of similar size rather than larger data sets. If all 
the data sets could be pooled for a joint analysis, the resulting standard errors would be 
much lower and it seems likely that the bias would decrease substantially accordingly. 
However, the practical situation is more likely to be that the data sets cannot be pooled 
and that we will have separate analyses, each with potentially large standard errors and 
bias. In this case, a properly conducted metaanalyses should account for this property 
of REML and produce estimates comparable to what a joint analysis would have 
yielded. But, a weighted average of the estimates will not have this property and 
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"eyeball estimates" attempting to combine various studies mentally will be even worse. 
Therefore, it will be important to use appropriate metaanalysis techniques that account 
for this property. 

In conducting its process for independent (co)variance estimation/validation, 
NBCEC should consider setting a minimum standard error on estimates of Rg

2 and Rp
2. 

These could be on a per population basis and/or for the pooled and/or metaanalysis 
results.   

In the context of MAS, the estimates of the regression coefficients are probably 
more important in the short term than they will be when the incorporation of DNA testing 
into the NCE system becomes complete. The reason they are important in the short 
term is that they serve essentially as a scaling factor for translating between the units of 
MBV and the units of EPD. They typically are reported in identical units, but this can be 
misleading. First, MBV are predictors of breeding value, while EPD predict half of 
breeding value. But more importantly, if b is substantially less than one, the MBV 
overstate the effect of the test, in terms of how users perceive the MBV relative to EPD. 
Low values of b are not good or bad, they just change how the MBV should be 
evaluated relative to EPD. 

Once MBV are incorporated into NCE and are (optimistically) no longer 
evaluated by users directly alongside EPD, the issue of how MBV are scaled should 
become inconsequential. In the multiple trait model, the output of importance is the EPD 
of the observed trait, presented in its current units. However, its accuracy should be 
improved due to the correlations with MBV (MacNeil et al., 2009). 

The regressions of observed phenotypes on MBV for tests that have gone 
through the NBCEC validation process have ranged from about 0.2 to 1. There are 
several reasons for this: the discovery process favors SNP whose effects are 
overestimated in the discovery data, it is likely that some of the SNP included in the 
MBV are false positives (have no effect on the observed trait) and those SNP that are 
actually predicting genetic effects on the observed trait are unlikely to be the causative 
SNP (there is an imperfect correlation between the SNP effect and the part of the 
genetic effect on the observed trait that they are predicting). It makes no practical 
difference what the cause of the regression being different from one is. 

In past NBCEC validations, the primary criteria for evaluating MBV has been a 
test of the null hypothesis that b = 0 (i.e., did the test perform significantly better than a 
test with no value?). We envision that the process will evolve into one primarily focused 
on the estimation of the variances and covariances required to integrate MBV into NCE. 
As shown here, the proportion of additive genetic variation accounted for by the MBV is 
a fundamental byproduct of these (co)variances and we believe it is a better metric with 
which to evaluate DNA tests than the significance level of b ≠ 0. 

In the context of MAM, the issue of scaling and the regression of phenotype on 
MGV is likely to be more important and persist longer because the fundamental purpose 
of the tests is to predict phenotypic differences rather than ranking animals and because 
it seems unlikely that there will be an equivalent to NCE to automatically transform MGV 
to a practically useful scale. 

It has been suggested to test the null hypothesis that b = 1 (in this case, a lack of 
significant difference from one is desired). However, there are some problems with this 
approach: the scale of phenotypes is not uniform across environments and production 
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systems, even within the U.S. beef industry. The NCE system expresses EPD on a 
scale that is essentially averaged over the seedstock individuals within a breed. 
However, it should not surprise us if the phenotypes in any one particular population 
were on a scale significantly different from the NCE scale (see Kuehn et al., 2009 for 
examples in which the regression of progeny phenotype on EPD are different from one) 
or on the scale of any particular MGV intended for use across a broad range of 
environments and production systems. 

Therefore, it might be more useful to test the null hypothesis that 0.8 ≤ b ≤ 1.25. 
This would allow for some range in the scale of the MGV. However, if the scale was too 
far off for certain production conditions, it would indicate that the MGV should be 
rescaled (at the minimum), or perhaps reestimated and that different versions of MGV 
(perhaps derived from a common set of SNP) should be used for those different 
production conditions. 

Assuming the multiple trait approach is used for estimation of Rg
2 and/or Rp

2, it 
will be more convenient to estimate b with b̂MT0 or b̂MTe and, in most cases, this should 
be perfectly acceptable. However, if important decisions are to be made based on 
hypothesis tests and the significance values are close to the threshold, it would be 
preferable to use b̂ST. 

It is certainly not necessary to use REML to estimate the proposed statistics. 
Gibbs sampling could also be used to obtain Bayesian estimates, including the full 
posterior distribution. This approach should handle the boundary conditions better and 
would not require approximation of the standard error. It should be computationally 
feasible for the size of data sets that are likely to be available. 

In order for an estimate of proportion of variation to be useful, it is critical that the 
MV not be derived from the same (or a very closely related population) as is used to 
estimate proportion of variation. Otherwise, the estimate of proportion of variation will be 
biased up, perhaps very seriously. Finding appropriate populations can be a 
considerable challenge for traits for which phenotypes are quite limited (e.g., residual 
feed intake). A practical guideline is that the average relationship between the animals 
in the discovery data and those in the data from which the proportion of variation will be 
estimated should not exceed the average relationship between the discovery population 
and the target population for application of the test. 

Some rare alleles with large, favorable effects may have substantial economic 
value while accounting for little current genetic variation. Such tests are valuable 
because they have the potential, given sufficient selection emphasis and time, to 
account for considerable genetic variation in the future. Therefore, in the future, it will be 
beneficial to develop methods to estimate potential future genetic variation accounted 
for by a test. However, this seems unfeasible for the current generation of DNA tests for 
which the results are presented only as MV, without the individual genotypes. In this 
situation, it is impossible to compute allele frequencies and effects of individual SNP, 
and this is the essence of the information required to estimate potential future genetic 
variation. Therefore, for the immediate future, it seems most practical to focus on 
current genetic variation, which will be challenging enough by itself. When that 
challenge has been substantially met, we can shift the focus to finding feasible 
approaches to estimating potential future variation. 
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Although proportion of additive genetic variation is a useful metric for evaluating 
DNA tests intended for use in MAS, the form that seedstock breeders will find easier to 
interpret is how much does the test increase the accuracy of EPD on an animal that 
already has a certain base level of accuracy (the most relevant is probably the typical 
accuracy for the trait of a yearling animal in the breeder's herd). A table illustrating this 
increase in accuracy for a specific example can be found at 
http://www.bifconference.com/bif2008/ppt/Stephen%20Kachman_GP.pdf (accessed 
4/15/09). A formula or table that is fairly general would be a useful contribution to the 
field. 

Conclusions 
We consider the reporting of percentage of genetic variation accounted for by 

DNA tests to be an integral part of the validation process in the short term. Furthermore, 
it is an important step in the longer term transition away from validating whether a test 
"works" or not toward the increasingly relevant process of estimating the (co)variance 
parameters. This estimation will be required to incorporate DNA testing into the national 
cattle evaluation system, and thus, for the beef industry to utilize this technology much 
more effectively and extensively than it is currently being utilized. 

The proportion of variation accounted for by DNA tests should be a very useful 
tool for cattle producers to use in determining the value of DNA tests in their breeding 
programs and production systems. 

The NBCEC statistical team considers the squared genetic correlation between 
the observed trait and the MBV from the multiple trait model (R̂gMT

2) to be the best 
estimator of proportion of genetic variation accounted for by a DNA test (in the form of 
an MBV). Therefore, until further notice, NBCEC will compute proportion of genetic 
variation with this method in all future validation analyses and will require that it be 
computed in this way in third party analyses that are to be used in NBCEC validation. 
Furthermore, we recommend that henceforth this estimator be referred to simply as R̂g

2. 
Similarly, R̂pMT

2 is recommended as the best estimator of the proportion of phenotypic 
variance accounted for by an MGV for use in MAM and we recommend that it be 
referred to simply as R̂p

2. 
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Appendix 1 
Standard errors of functions of variance components can be obtained using the 

delta method (e.g., Lynch and Walsh, 1998, Appendix 1). Let f(θ̂1, θ̂2,…, θ̂k) be a 
function of k variance components θ1, θ2,…, θk.  An approximate variance of f(θ̂1, θ̂2,…, 
θ̂k) can be found using 

 Var(f(θ̂1, θ̂2,…, θ̂k)) = ∑
  i=1

k
 ⎝⎜
⎛

⎠
⎟
⎞∂f

∂θi

2

 Var(θ̂i) + 2 ∑
  i=2

k
 ∑
  j=1

i−1
 ⎝⎜
⎛

⎠
⎟
⎞∂f

∂θi ⎝
⎜
⎛

⎠
⎟
⎞∂f

∂θj
 Cov(θ̂i,θ̂j) 

An approximate standard error can then be found by taking the square root of the 
approximate variance. Formulas for some common functions can be found in Table A1. 
 
Table A1. Approximate variance formulas using the delta method for some 
common functions 
Function Approximate Variance 

θ̂2 4 θ2 Var(θ̂) 

θ̂1

θ̂2

 ⎝
⎜
⎛

⎠
⎟
⎞θ1

θ2

2

⎝
⎜
⎛

⎠
⎟
⎞Var(θ̂1)

θ1
2  + Var(θ̂2)

θ2
2  − 2 Cov(θ̂1,θ̂2)

θ1θ2
 

 
θ̂12

θ̂1θ̂2

 
⎝
⎜
⎛

⎠
⎟
⎞θ̂12

θ1θ2

2

⎝
⎜
⎛

⎠
⎟
⎞Var(θ̂12)

θ12
2  + Var(θ̂1)

4θ1
2  + Var(θ̂2)

4θ2
2  − Cov(θ̂12,θ̂1)

θ12θ1
 − Cov(θ̂12,θ̂2)

θ12θ2
 − Cov(θ̂1,θ̂2)

2θ1θ2
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Table 1.  Proportion of Additive Variance Explained by MBV 
Model: Two Trait Two Trait Full & Reduced ST Full Single Trait 

Res.  Cov: Estimated  Constrained to Zero N/A N/A 
Estimator: 

 

Genetic Correlation Squared 

R̂gMT
2 

      Genetic Correlation Squared 

R̂gMT
2 

Reduction in Variance 

R̂gRV
2 

Regression on MBV 

R̂gRPM
2 

Simulation 
Parameters 
h2

gy Rg
2 

Mean 
Estimate ± 
Standard 
Error of Mean 

Root 
Mean 
Sq 
Error 

Mean 
Std 
Error 
of Est 

Std 
Dev 
of  
Est 

Mean 
Estimate ± 
Standard 
Error of Mean 

Root 
Mean 
Sq 
Error 

Mean 
Std 
Error 
of Est 

Std 
Dev 
of  
Est 

Mean 
Estimate ± 
Standard 
Error of Mean 

Root 
Mean 
Sq 
Error 

Mean 
Estimate ± 
Standard  
Error of Mean 

Root 
Mean 
Sq 
Error 

Data Simulated from Additive Model Only 
0.1 0.04 0.113 ± 0.008 0.184 0.262 0.169 0.082 ± 0.005 0.114 0.174 0.106  0.018 ± 0.019 0.427  0.048 ± 0.018 0.404
0.1 0.16 0.205 ± 0.010 0.228 0.256 0.224 0.230 ± 0.009 0.206 0.259 0.193  0.171 ± 0.084 1.886  0.214 ± 0.073 1.644
0.1 0.36 0.380 ± 0.012 0.274 0.289 0.273 0.441 ± 0.010 0.243 0.264 0.229  1.397 ± 1.102a 6.616  6.615 ± 6.201b 138.810
0.1 0.64 0.536 ± 0.012 0.290 0.196 0.271 0.641 ± 0.010 0.214 0.220 0.214  0.285 ± 0.551c 9.885 -0.234 ± 0.587 17.029
0.3 0.04 0.061 ± 0.003 0.072 0.051 0.069 0.050 ± 0.001 0.035 0.033 0.033  0.036 ± 0.004 0.079  0.049 ± 0.001 0.034
0.3 0.16 0.169 ± 0.005 0.118 0.093 0.118 0.185 ± 0.003 0.081 0.076 0.077  0.152 ± 0.008 0.184  0.196 ± 0.014 0.324
0.3 0.36 0.352 ± 0.007 0.157 0.120 0.157 0.395 ± 0.005 0.127 0.117 0.123  0.351 ± 0.008 0.178  0.419 ± 0.008 0.196
0.3 0.64 0.636 ± 0.007 0.160 0.128 0.160 0.681 ± 0.006 0.146 0.132 0.140  0.661 ± 0.010 0.229  0.834 ± 0.052 1.184
0.5 0.04 0.049 ± 0.002 0.053 0.038 0.052 0.047 ± 0.001 0.025 0.024 0.024  0.036 ± 0.003 0.062  0.045 ± 0.001 0.025
0.5 0.16 0.156 ± 0.004 0.095 0.066 0.094 0.178 ± 0.003 0.060 0.053 0.058  0.156 ± 0.005 0.108  0.175 ± 0.003 0.072
0.5 0.36 0.351 ± 0.005 0.117 0.088 0.117 0.386 ± 0.003 0.078 0.079 0.074  0.355 ± 0.006 0.127  0.394 ± 0.006 0.129
0.5 0.64 0.629 ± 0.005 0.111 0.090 0.111 0.658 ± 0.004 0.092 0.086 0.090  0.630 ± 0.006 0.124  0.716 ± 0.014 0.313
Data Simulated from Additive & Non-Additive Model 
0.1 0.04 0.138 ± 0.008 0.209 0.340 0.184 0.116 ± 0.007 0.170 0.192 0.152  0.166 ± 0.059 1.324 -0.092 ± 0.129 2.879
0.1 0.16 0.249 ± 0.011 0.256 0.316 0.240 0.305 ± 0.009 0.245 0.251 0.198 -0.132 ± 0.159 3.556 -0.129 ± 0.242 5.424
0.1 0.36 0.379 ± 0.011 0.249 0.251 0.248 0.488 ± 0.008 0.227 0.234 0.188  0.317 ± 0.158 3.527  0.306 ± 0.261 5.840
0.1 0.64 0.505 ± 0.010 0.261 0.247 0.224 0.681 ± 0.007 0.167 0.199 0.162  0.627 ± 0.420 9.399  0.835 ± 1.017 22.752
0.3 0.04 0.073 ± 0.004 0.098 0.077 0.092 0.075 ± 0.002 0.063 0.047 0.053  0.037 ± 0.004 0.096  0.078 ± 0.003 0.071
0.3 0.16 0.200 ± 0.006 0.145 0.126 0.139 0.255 ± 0.004 0.136 0.092 0.097  0.167 ± 0.007 0.153  0.288 ± 0.006 0.185
0.3 0.36 0.377 ± 0.007 0.153 0.157 0.152 0.480 ± 0.005 0.166 0.117 0.115  0.345 ± 0.012 0.264  0.680 ± 0.025 0.654
0.3 0.64 0.650 ± 0.006 0.141 0.146 0.140 0.744 ± 0.005 0.151 0.113 0.110  0.651 ± 0.009 0.194  1.169 ± 0.028 0.824
0.5 0.04 0.060 ± 0.003 0.065 0.059 0.061 0.070 ± 0.001 0.044 0.032 0.033  0.036 ± 0.003 0.065  0.071 ± 0.002 0.048
0.5 0.16 0.176 ± 0.005 0.103 0.100 0.102 0.240 ± 0.003 0.103 0.064 0.064  0.154 ± 0.005 0.114  0.272 ± 0.004 0.146
0.5 0.36 0.375 ± 0.006 0.125 0.119 0.124 0.469 ± 0.004 0.136 0.080 0.082  0.359 ± 0.006 0.131  0.600 ± 0.009 0.307
0.5 0.64 0.637 ± 0.005 0.113 0.107 0.113 0.721 ± 0.003 0.107 0.070 0.070  0.623 ± 0.006 0.126  1.113 ± 0.016 0.595
a This cell included two replicates with extreme values. The mean of the remaining 498 replicates was 0.194 with a standard deviation of 6.614. 
b This cell included one replicate with an extreme value. The mean of the remaining 499 replicates was 0. 419 with a standard deviation of 5.177. 
c This cell included one replicate with an extreme value. The mean of the remaining 499 replicates was -0.049 with a standard deviation of 9.861. 
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Table 2.  Proportion of Phenotypic Variance Explained by MGV 
Model: Two Trait Full & Reduced ST Full Single Trait 

Residual Covariance: Estimated  N/A N/A 
Estimator: 

 

Genetic Correlation Squared 

R̂pMT
2 

Reduction in Variance 

R̂pRV
2 

Regression on MBV 

R̂pRPM
2 

Simulation Parameters  
h2

gy     Rg
2     Rp

2 Mean Estimate 
± Standard 
Error of Mean 

Root 
Mean 
Sq 
Error 

Mean 
Std 
Error 
of Est 

Std 
Dev  
of  
Est 

Mean Estimate 
± Standard 
Error of Mean 

Root 
Mean 
Sq 
Error 

Mean Estimate 
± Standard  
Error of Mean 

Root 
Mean 
Sq 
Error 

Data Simulated from Additive Model Only 
0.1 0.04 0.004 0.0050 ± 0.0002 0.0043 0.0039 0.0042 0.0041 ± 0.0002 0.0043 0.0051 ± 0.0002 0.0045
0.1 0.16 0.016 0.0158 ± 0.0002 0.0078 0.0073 0.0078 0.0153 ± 0.0004 0.0081 0.0164 ± 0.0004 0.0080
0.1 0.36 0.036 0.0362 ± 0.0002 0.0149 0.0107 0.0149 0.0361 ± 0.0005 0.0121 0.0371 ± 0.0005 0.0121
0.1 0.64 0.064 0.0595 ± 0.0002 0.0165 0.0119 0.0158 0.0634 ± 0.0007 0.0152 0.0644 ± 0.0007 0.0153
0.3 0.04 0.012 0.0127 ± 0.0002 0.0070 0.0071 0.0070 0.0118 ± 0.0003 0.0072 0.0130 ± 0.0003 0.0074
0.3 0.16 0.048 0.0481 ± 0.0002 0.0136 0.0137 0.0136 0.0480 ± 0.0006 0.0142 0.0493 ± 0.0006 0.0141
0.3 0.36 0.108 0.1064 ± 0.0002 0.0193 0.0191 0.0192 0.1073 ± 0.0009 0.0199 0.1086 ± 0.0009 0.0196
0.3 0.64 0.192 0.1893 ± 0.0002 0.0238 0.0224 0.0237 0.1923 ± 0.0011 0.0243 0.1935 ± 0.0011 0.0244
0.5 0.04 0.020 0.0200 ± 0.0002 0.0092 0.0089 0.0092 0.0193 ± 0.0004 0.0097 0.0206 ± 0.0004 0.0089
0.5 0.16 0.080 0.0772 ± 0.0002 0.0184 0.0166 0.0182 0.0792 ± 0.0008 0.0182 0.0803 ± 0.0008 0.0176
0.5 0.36 0.180 0.1758 ± 0.0002 0.0249 0.0229 0.0245 0.1784 ± 0.0011 0.0240 0.1795 ± 0.0010 0.0228
0.5 0.64 0.320 0.3139 ± 0.0002 0.0265 0.0256 0.0258 0.3166 ± 0.0012 0.0274 0.3173 ± 0.0012 0.0263
Data Simulated from Additive & Non-Additive Model 
0.1 0.04 0.005 0.0059 ± 0.0002 0.0047 0.0044 0.0046 0.0049 ± 0.0002 0.0048 0.0060 ± 0.0002 0.0049
0.1 0.16 0.020 0.0212 ± 0.0004 0.0093 0.0087 0.0093 0.0205 ± 0.0004 0.0093 0.0216 ± 0.0004 0.0094
0.1 0.36 0.045 0.0455 ± 0.0006 0.0131 0.0125 0.0131 0.0457 ± 0.0006 0.0133 0.0466 ± 0.0006 0.0133
0.1 0.64 0.080 0.0764 ± 0.0008 0.0176 0.0149 0.0172 0.0788 ± 0.0008 0.0171 0.0798 ± 0.0008 0.0171
0.3 0.04 0.015 0.0161 ± 0.0004 0.0083 0.0081 0.0082 0.0150 ± 0.0004 0.0085 0.0161 ± 0.0004 0.0081
0.3 0.16 0.060 0.0613 ± 0.0007 0.0158 0.0154 0.0157 0.0603 ± 0.0007 0.0159 0.0611 ± 0.0007 0.0156
0.3 0.36 0.135 0.1344 ± 0.0010 0.0214 0.0210 0.0214 0.1337 ± 0.0010 0.0217 0.1346 ± 0.0010 0.0213
0.3 0.64 0.240 0.2393 ± 0.0010 0.0230 0.0243 0.0230 0.2396 ± 0.0011 0.0235 0.2400 ± 0.0010 0.0231
0.5 0.04 0.025 0.0258 ± 0.0005 0.0108 0.0106 0.0107 0.0246 ± 0.0005 0.0109 0.0259 ± 0.0005 0.0103
0.5 0.16 0.100 0.0999 ± 0.0009 0.0195 0.0196 0.0195 0.0992 ± 0.0009 0.0199 0.1003 ± 0.0008 0.0188
0.5 0.36 0.225 0.2249 ± 0.0011 0.0249 0.0252 0.0249 0.2241 ± 0.0011 0.0251 0.2245 ± 0.0011 0.0248
0.5 0.64 0.400 0.3988 ± 0.0011 0.0257 0.0258 0.0256 0.3983 ± 0.0012 0.0262 0.3999 ± 0.0011 0.0255
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Table 3.  Regression of Observed Trait Phenotypes on MBV  
Model: Two Trait Two Trait Full Single Trait 

Res.  Cov: Estimated  Constrained to Zero N/A 
Estimator: 

 

Genetic (Co)variance Parameter Est. 

b̂MTe  
      Genetic (Co)variance Parameter Est. 

b̂MT0 

Estimated Regression on MBV 

b̂ST 
Simulation 
Parameters  
h2

gy    Rg
2         b 

Mean Estimate 
± Standard 
Error of Mean 

Root 
Mean 
Sq 
Error 

Mean 
Std 
Error 
of Est 

Std 
Dev 
of  
Est 

Mean Estimate 
± Standard 
Error of Mean 

Root 
Mean 
Sq 
Error 

Mean 
Std 
Error 
of Est 

Std 
Dev 
of  
Est 

Mean 
Estimate ± 
Standard 
Error of Mean 

Root 
Mean 
Sq 
Error 

Mean 
Std 
Error 
of Est 

Std 
Dev  
of  
Est 

Data Simulated from Additive Model Only 
0.1 0.04 0.2 0.200 ± 0.004 0.100 0.098 0.100 0.199 ± 0.005 0.102 0.097 0.102 0.203 ± 0.005 0.102 0.103 0.102 
0.1 0.16 0.4 0.388 ± 0.005 0.103 0.096 0.102 0.389 ± 0.004 0.101 0.093 0.100 0.392 ± 0.005 0.101 0.103 0.101 
0.1 0.36 0.6 0.594 ± 0.005 0.101 0.092 0.101 0.591 ± 0.005 0.105 0.084 0.104 0.601 ± 0.004 0.100 0.101 0.100 
0.1 0.64 0.8 0.767 ± 0.005 0.112 0.079 0.107 0.766 ± 0.005 0.116 0.068 0.111 0.795 ± 0.004 0.098 0.099 0.098 
0.3 0.04 0.2 0.200 ± 0.003 0.059 0.061 0.059 0.201 ± 0.003 0.059 0.060 0.059 0.200 ± 0.003 0.060 0.061 0.060 
0.3 0.16 0.4 0.399 ± 0.003 0.060 0.060 0.060 0.403 ± 0.003 0.060 0.059 0.060 0.402 ± 0.003 0.060 0.059 0.060 
0.3 0.36 0.6 0.597 ± 0.003 0.060 0.057 0.059 0.602 ± 0.003 0.059 0.057 0.059 0.599 ± 0.003 0.059 0.057 0.059 
0.3 0.64 0.8 0.796 ± 0.003 0.057 0.052 0.057 0.800 ± 0.003 0.058 0.051 0.058 0.802 ± 0.002 0.055 0.054 0.055 
0.5 0.04 0.2 0.195 ± 0.002 0.048 0.046 0.048 0.199 ± 0.002 0.045 0.047 0.045 0.198 ± 0.002 0.045 0.047 0.045 
0.5 0.16 0.4 0.393 ± 0.002 0.049 0.045 0.049 0.402 ± 0.002 0.045 0.045 0.045 0.399 ± 0.002 0.045 0.045 0.045 
0.5 0.36 0.6 0.596 ± 0.002 0.047 0.043 0.047 0.603 ± 0.002 0.043 0.043 0.043 0.599 ± 0.002 0.042 0.043 0.042 
0.5 0.64 0.8 0.797 ± 0.002 0.042 0.039 0.041 0.801 ± 0.002 0.039 0.039 0.039 0.798 ± 0.002 0.039 0.039 0.039 
Data Simulated from Additive & Non-Additive Model 
0.1 0.04 0.2 0.198 ± 0.004 0.091 0.089 0.091 0.198 ± 0.004 0.092 0.085 0.092 0.198 ± 0.004 0.092 0.092 0.092 
0.1 0.16 0.4 0.401 ± 0.004 0.098 0.087 0.098 0.401 ± 0.004 0.092 0.082 0.092 0.407 ± 0.004 0.093 0.091 0.092 
0.1 0.36 0.6 0.597 ± 0.004 0.090 0.085 0.090 0.596 ± 0.004 0.093 0.077 0.093 0.604 ± 0.004 0.089 0.090 0.089 
0.1 0.64 0.8 0.776 ± 0.004 0.096 0.079 0.093 0.774 ± 0.004 0.102 0.066 0.099 0.794 ± 0.004 0.090 0.088 0.090 
0.3 0.04 0.2 0.200 ± 0.002 0.055 0.054 0.055 0.204 ± 0.002 0.054 0.054 0.053 0.200 ± 0.002 0.053 0.053 0.053 
0.3 0.16 0.4 0.401 ± 0.002 0.053 0.053 0.053 0.406 ± 0.002 0.053 0.052 0.053 0.400 ± 0.002 0.053 0.052 0.053 
0.3 0.36 0.6 0.598 ± 0.002 0.051 0.051 0.051 0.605 ± 0.002 0.052 0.050 0.052 0.598 ± 0.002 0.051 0.050 0.051 
0.3 0.64 0.8 0.801 ± 0.002 0.045 0.046 0.045 0.805 ± 0.002 0.048 0.045 0.048 0.802 ± 0.002 0.045 0.047 0.045 
0.5 0.04 0.2 0.199 ± 0.002 0.043 0.044 0.043 0.205 ± 0.002 0.042 0.042 0.042 0.200 ± 0.002 0.041 0.041 0.041 
0.5 0.16 0.4 0.398 ± 0.002 0.042 0.042 0.042 0.407 ± 0.002 0.041 0.040 0.041 0.399 ± 0.002 0.040 0.039 0.040 
0.5 0.36 0.6 0.599 ± 0.002 0.036 0.038 0.036 0.608 ± 0.002 0.036 0.037 0.035 0.598 ± 0.002 0.035 0.037 0.035 
0.5 0.64 0.8 0.800 ± 0.001 0.032 0.033 0.032 0.808 ± 0.001 0.033 0.033 0.032 0.801 ± 0.001 0.032 0.032 0.032 

 
 




