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Abstract 
 
Some traits are controlled by single genes, such as many genetic abnormalities, and 
some cattlemen already use DNA tests for these genes. However, most economically 
important traits are controlled by many genes and influenced by the environment.  
Recently panels of 50,000 genetic markers called SNPs have become available and 
they provide an opportunity to select for all the traits we seek to improve. The first step 
in using these SNPs is to estimate the effect of each SNP on all the important traits. To 
do this requires a ‘discovery population’ of cattle that have been genotyped for the 
SNPs and measured for the traits. From this population a prediction equation is derived 
that predicts breeding value or progeny difference for a trait, say marbling, from the 
50,000 SNP genotypes (breeding values are just twice the progeny difference). This 
prediction equation can then be applied to animals that have SNP genotypes but no 
phenotypic information to calculate a predicted breeding value that is sometimes called 
a molecular breeding value (MBV). Usually animals will have some other source of 
information about their breeding value (e.g. pedigree and ultrasound scans) that are 
used at present to calculate a traditional estimated breeding value (EBV) or EPD. 
Therefore the MBV should be combined with the traditional EBV to give a prediction of 
breeding value that is more accurate than either source of information alone. This new 
estimate has been called a genomic EBV (GEBV). Obtaining a prediction equation that 
accurately predicts breeding value from SNP genotypes has proven difficult in beef 
cattle. We have often found that a prediction that works in one breed or herd does not 
work in other breeds and herds. Therefore we need to estimate the prediction equation 
from very large discovery populations which include several breeds and the test or 
validate the prediction equations across large populations also comprising several 
breeds.  
 
Introduction 

 
Cattle breeders seek to use the genetic variation between animals to improve their 
herds and breeds. Genetic variation exists for almost all traits that we can measure or 
record. Sometimes this variation is controlled by a single gene (e.g. red vs. black coat 
colour) but often there are many genes where variation affects the trait and where 
environmental factors also affect the phenotype or performance of the animal as we 
observe it (e.g. growth rate). Regardless of the number of genes involved, genetic 
variation is caused by differences between animals in DNA sequence. These 
differences in sequence arise due to mutation and sometimes the mutated version and 
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the original version both occur at intermediate frequency in the population and we speak 
of a polymorphism. 
 
Scientists have long sought to find the variations in DNA sequence that cause variations 
in phenotype, especially in traits that are of economic importance, in the hope that they 
could be used in selection of better cattle. For some traits controlled by a single gene 
this search has been successful. For instance, we now know the variation in DNA 
sequence that determines red vs. black coat colour and the variation that causes the 
disease mannosidosis. However, for most traits we know few, if any, of the variations in 
DNA sequence that cause genetic variation. 
 
One type of DNA variation is called a single nucleotide polymorphism (SNP). It is a 
position in the DNA where a single letter of the DNA sequence varies. For instance, it 
might be a ‘T’ in some animals but a ‘G’ in others. In fact animals receive one copy of 
the DNA sequence from their sire and one from their dam, so an animal can have one 
of three genotypes at such a SNP: GG, TT or GT. 
 
Recently commercial ‘SNP chips’ that can genotype 50,000 SNPs have become 
available and given us new hope that genetic markers for economic traits could be 
found.  These 50,000 SNPs are unlikely to cause differences in performance between 
animals but they cover the whole genome of the animal so that genes that do cause 
variation must be close to at least one SNP on the chip. Therefore we expect the SNPs 
to be in linkage disequilibrium with the polymorphic genes that actually cause variation 
in economic traits. Consequently, the SNPs are correlated with the causal variants and 
so can be used to predict the genetic or breeding value of animals for those traits.  
 
In this paper I will consider how the data from SNP chips can best be used to predict 
breeding values. The answer depends on several factors. Firstly, it depends on the 
number of genes that have an important effect on the trait. This is considered in the next 
section entitled ‘Genetic architecture of quantitative traits’. Regardless of the genetic 
architecture we need a discovery population of animals that have been measured for 
the trait and genotyped for the SNPs, from which to estimate a prediction equation that 
predicts breeding value from SNP genotypes. This predictions equation must be 
validated in an independent sample of animals. Finally a procedure to incorporate the 
SNP data on selection candidates into the calculation of estimated breeding values 
(EBVs) or EPDs is needed (EBVs are just twice EPDs). This paper will deal with each of 
these topics in turn. 
 
Genetic architecture of quantitative traits 
 
Most traits of economic importance are controlled by many genes and by environmental 
factors: but how many genes? The best data comes from genome wide association 
studies (GWASs) on human height which is a classical quantitative trait. These GWASs 
have measured tens of thousands of people for height and genotyped them for over 
300,000 SNPs. The SNPs with the biggest effects explain 0.3% of the phenotypic 
variance (Visscher 2008). Much of the variance must be due to genes with even smaller 
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effects, so it seems likely that there are >1000 genes affecting height. Our own studies 
on milk production traits in dairy cattle give a similar result. 
 
Of course there are traits and populations where a single gene causes a large part of 
the genetic variance. The mutations that cause double muscling have a large effect and 
would explain a large part of the variation in muscling in a population in which the 
mutation occurred at intermediate frequency. However, it appears that such cases are 
rare. Probably there is a spectrum of effects that mutations can have on a trait. Most 
mutations have a very small effect but occasionally there are mutations of large effect 
(figure 1). 
 
How common are the mutant alleles? If mutations have no effect on the phenotype or 
fitness of an animal (so called neutral mutations) their frequency drifts by chance. In this 
case, most mutant alleles are at very low frequency but  some, by chance, become 
common. If the effective population size of the population is constant there is a simple 
formula for the distribution of allele frequencies (figure 2). However, cattle have 
experienced periods of low effective population size or inbreeding due to domestication 
and stud book formation. This disperses allele frequencies so that rare alleles are not as 
common as expected from figure 2 but more like figure 3. 
 
The SNPs on the SNP chip are likely to be neutral and so there distribution of allele 
frequencies would be like those of fig 3 except that rare SNPs are hard to discover, so 
the SNPs on the chip are biased towards intermediate allele frequencies. 
 
The mutations affecting economic traits are unlikely to be completely neutral. If they 
affect a trait they are likely to have an effect on natural fitness or on selection by human 
cattle breeders. If the mutant allele is more fit than the original allele, it will increase in 
frequency and may become fixed in the population (i.e. the only allele present). More 
commonly the mutant will be less fit and will exist at low frequency most of the time until 
it is eliminated. This is important because it means that variants we are trying to find, 
because they affect economic traits, are likely to have one rare allele and one common 
allele. 
 
Further evidence for this comes from the study of the variance in quantitative traits 
caused by new mutations each generation. This has been measured in laboratory 
animals such as mice and is typically 0.001 times the environmental variance. If the 
mutations were neutral the genetic variance would build up each generation and reach 
a value of 2 x effective population size x 0.001 times environmental variance. In 
populations where the effective population size is >10000, this would lead to 
heritabilities > 0.95 which is not what we observe. Therefore selection must be acting to 
eliminate some of the variation introduced by mutation. Before the mutant is lost 
completely it will add to the genetic variation but it will usually be rare. 
 
In summary, for most economic traits, we will need to track very many genes in order to 
explain a large part of the genetic variance. Although, in some cases, a single gene may 
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have a large effect, typically we will need hundreds of genes to explain most of the 
genetic variance and at many of these genes one allele is likely to be rare. 
 
The discovery population 

 
Unfortunately we do not know the mutations that cause variation in traits of interest, so 
we have to rely on random SNPs spread over the whole genome, so that each 
causative mutation is correlated with at least one SNP. We genotype the SNPs and we 
measure the trait on the discovery population and from this experiment we calculate a 
prediction equation that predicts the trait from the SNP genotypes. This is the central 
concept of ‘genomic selection’ (Meuwissen et al 2001). They considered several 
statistical methods for calculating this prediction equation. The best method depends on 
the genetic architecture of the trait. If there are very many genes with very small effects 
on the trait, then the best method is the one Meuwissen et al. called BLUP. If only some 
of the SNPs are needed to track genes for the trait, then the best method is the one 
they called Bayes B. In practice we find that the accuracy of the prediction equation is 
similar whether we use BLUP or Bayes B. In either case a large proportion, if not all, of 
the 50,000 SNPs are needed to maximise the accuracy of prediction. 
 
The factors that have the biggest effect on the accuracy of prediction are the size of the 
discovery population and the heritability of the trait. The discovery population should be 
at least several thousand animals. The lower the heritability the larger the discovery 
population needs to be. This is because the phenotype measured on an animal is a 
poor guide to its genetic value if the heritability is low. The highest ‘heritability’ occurs 
when we use the result of a progeny test on each animal instead of its own phenotype. 
(The EPD calculated from a progeny test is a better guide to the sire’s genetic value 
than his own phenotype). The dairy industry is fortunate to have many progeny tested 
sires to use in its discovery population, but it is still necessary to use thousands of bulls 
to achieve an accuracy >0.7.  
 
We (Goddard 2008, Hayes et al 2009) have developed a theory for predicting the 
accuracy of prediction equations that use the BLUP method of estimation. Fig 4 
illustrates the number of records needed to achieve accuracies of 0.5 or 0.7. If we use 
the phenotype of animals in the discovery population for a trait with h2 = 0.3, we will 
need 4,000 animals to achieve an accuracy of 0.5.   
 
Can the prediction equation calculated from one breed be used in other breeds? The 
prediction equation depends on linkage disequilibrium between the SNPs on the chip 
and the mutations that actually cause variation in the trait. We have found that this 
linkage disequilibrium (LD) is only consistent from one Bos taurus breed to another if 
the SNP and the gene are <10 kb apart. The SNPs on the 50k chip are about 60kb 
apart and do not show consistent LD between breeds (de Roos et al 2008). Confirming 
this, we have found that a prediction equation estimated in Holsteins does not work in 
Jerseys. 
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Fig 5 illustrates the problem. In the fig 5, one breed has the ‘+’ allele for the trait carried 
on the same chromosome as the ‘T’ allele at the SNP. However, in another breed the ‘+’ 
allele is on the same chromosome as the ‘G’ allele or the causal gene is not even 
polymorphic (i.e. all animals carry the same allele, ‘-‘ or ‘+’). 
 
If you include both Holsteins and Jerseys in the discovery population it is possible to 
find a prediction equation that works in both breeds. This is not surprising if in fact there 
are many SNPs in LD with a causal gene and so it is possible to find one that is in 
consistent LD with the causal gene in both breeds. However, if you demand that the 
prediction equations works across 3 or 4 or more breeds, it becomes increasingly 
difficult to find a SNP on the 50k SNP chip that will work. We have used many breeds in 
a beef cattle discovery population and found that it is hard to find SNPs consistently 
associated with a trait presumably because associations that occur in one breed are 
diluted or cancelled out by associations in other breeds.  
 
The solution is to use a SNP chip with many more SNPs so that there is always a SNP 
very close (<10kb) to each causal gene and in consistent LD with it across B. taurus 
breeds. Hopefully a SNP chip with >300,000 SNPs will be available in the future. Even 
then I believe we will need different prediction equations for B.indicus breeds and 
crosses between B. taurus and B. indicus. 
 
Validation of the prediction equations 

 
The accuracy of a prediction equation cannot be judged in the discovery population 
from which it was derived. With 50,000 SNPs to choose from it is always possible to find 
some combination of them that works. You must assess the accuracy of the prediction 
equation by applying it to another independent group of animals that have been 
genotyped and measured for the trait. This can be a part of the discovery population 
that has been ‘put aside’ and not used for calculating the prediction equation.  
 
However, it should not be a random subset of the discovery population that has been 
put aside. Generally the prediction equation works much better in a random subset of 
the discovery population than in a completely new group of animals even if they are 
from the same breed. Since it is not in the discovery population that we want to use the 
prediction equation but in new groups of ‘selection candidates’, it is important that the 
validation be done in a group that are representative of the selection candidates where 
the prediction equation will be applied. 
 
We have found that prediction equations frequently do not work as well in a validation 
test as expected from the discovery population. I suspect that one reason for this is that 
one allele at the causal gene is rare. Consequently a gene that is polymorphic (i.e. 
variable) in one sample of a breed may not be polymorphic in another sample of the 
same breed, or one allele may be so rare in the validation sample that we have little 
power to detect it. 
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In summary, the frequent disappointments in the validation of prediction equations 
appear to be for four reasons: 

 the effects of individual genes are very small and so hard to estimate accurately 

 linkage disequilibrium is different in different breeds and so a prediction equation 
doesn’t work in a new breed 

 causal genes often have one rare allele whose frequency varies widely between 
samples of a breed and between breeds so that the variance caused by the gene 
varies widely. In extreme cases the gene may not be variable in some breeds. 

 causal genes with one rare allele are in poor LD with the SNPs on the SNP chip 
and so not well predicted by a prediction equation based on these SNPs. 

 
To improve on the past disappointing history of validation we need: 

 Very large discovery populations so that the effects of SNPs are estimated 
accurately 

 Discovery populations that sample a breed widely and include all breeds in which 
the prediction equation is to be used 

 A large enough validation population so that the standard error of the estimated 
accuracy of the prediction equation is small  

 A validation population that represents the cattle where it will be applied 

 A chip with >300,000 SNPs 

 Better methods to deal with causal genes with rare alleles 

 Better understanding of the genetic architecture of the traits we work on so that 
the method of estimating the prediction equation can reflect this architecture. 

 
Implementation of genomic selection 
 
The purpose of the prediction equation is to apply it to selection candidates in order to 
more accurately estimate their breeding value or calculate their EPD. When the 
prediction equation is applied to the SNP genotypes of selection candidates it generates 
an estimate of their breeding values which is sometimes called a molecular breeding 
value or MBV. However, typically these selection candidates have other sources of 
information on their breeding value which are used to calculate a traditional EPD. It is 
desirable to combine the MBV and the traditional EPD to give a better estimate of 
breeding value than either of them alone. Some people are calling this combined value 
a genomic EBV or genomic EPD (GEPD). However, in reality it is just an EPD 
calculated by including a new source of information (i.e. SNP genotypes). This view is 
important because it emphasises that the SNP genotypes are only valuable for selecting 
breeding stock, to the extent that they increase the accuracy of the EPD. 
 
Thus the implementation of genomic selection might involve the following steps: A cattle 
owner takes a tissue sample from each selection candidate and submits it to a company 
that provides a DNA service. The company genotypes each animal and applies its 
prediction equation to generate a MBV for each animal. The MBV is transmitted to the 
genetic evaluation centre that calculates EPDs and they combine it with the traditional 
data to generate GEPDs. In order to use the MBVs the genetic evaluation centre needs 
to know the genetic correlation between the MBV and the trait that is being predicted. 
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This can be estimated from the validation population but not so easily from the 
discovery population because it is biased upwards in the discovery sample. 
 
This is the process planned for beef cattle in Australia and, I believe, in USA and 
Canada. It is not, in my opinion, the ideal process nor the process planned for dairy 
cattle in the three countries. One disadvantage is that there are likely to be many MBVs. 
Each company will have different prediction equations based on different SNPs, each 
company will update their SNP panel regularly and change their prediction equation 
regularly and there will be different MBV formulae for different breeds. As a result, for 
some trait, there may be 60 MBVs that will be used by different cattle owners over the 
next 6 years. A genetic evaluation centre using this data will need a genetic correlation 
matrix among all these 60 MBVs and the trait itself. This correlation matrix will be very 
difficult to estimate and to maintain up to date and the risk of errors is high. (e.g. Will 
DNA companies remember to tell all genetic evaluation centres every time they change 
a prediction equation and supply the new MBV for lots of old cattle so that genetic 
covariances can be re-estimated?). Secondly, the commercial phenotypes collected on 
the cattle that are genotyped as part of the DNA service will not be automatically 
available to update the prediction equations. 
 
The dairy industry has gone down a different path. Raw genotypes will be submitted to 
the genetic evaluation centre. These will be used to calculate a prediction equation 
across all data. As more data accumulates through the commercial use of DNA testing it 
will be added to the database and used to update the prediction equation. Raw 
genotypes are stable data; they do not change when the prediction equation is changed 
unlike the MBVs calculated from them. Therefore storing the raw genotypes is much 
more logical.  
 
However, there are other disadvantages with the dairy industry model. In USA only the 
AI companies that participated in the USDA experiment have the right to use the 
prediction equation on bulls. In other countries there are similar restrictions. In all cases 
these occur because companies believe they have an advantage over their competitors 
that they are unwilling to sacrifice. Since nearly everyone is investing in the same 
technology, in the near future nobody will have much advantage. The world’s dairy 
farmers benefitted greatly from the open system of exchange of information that has 
prevailed for traditional genetic evaluation based on pedigrees and phenotypes. They 
would also be best served by a similar approach to genetic evaluations that include 
genomic data. So, I believe, would beef producers. 
 
We are currently in the first generation of genomic EPDs and EBVs. In years to come I 
predict that many animals will have DNA genotypes and the methods used to calculate 
EPDs will change drastically from today’s methods to ones driven by the effects of 
genes. This will lead to more accurate EPDs but is only possible if the genetic 
evaluation centre has access to the raw genotype data. 
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Figure 1. A model of the distribution of gene effects. 

Series 1 = the number of genes of a given effect size that are heterozygous in the 
average animal after selection where the selection coefficient is proportional to the 
effect of the gene. 
Series 2 = the number of new mutations of each size added per 1000 generations to the 
average animal. This distribution is assumed to be exponential. 
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Figure 2. Distribution of frequency of mutant allele across many SNPs. 

This assumes that effective population size remains constant. 
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Figure 3. Distribution of mutant allele frequencies across SNPs when inbreeding has 
reached F=0.5 after starting with the distribution in figure 2. Not shown in this figure are 
the 131 SNPs where the mutant allele has been lost and the 16 SNPs where it has 
been fixed. 
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Figure 4. The number of records needed for GEBVs with accuracy of 0.7 or 0.5 in a 
population with Ne=100. 
 

BREED

A B C

G + G - G -

T - T + T -

 
Figure 5. Linkage phase can vary between breeds. In breed A the SNP allele G will be 

inherited along with the ‘+’ allele for a trait and the ’T’ allele with the ‘-‘ allele for the trait. 
In breed B this pattern is reversed and in breed C the trait gene is not polymorphic. 




