Understanding Cow Size and Efficiency

BIF 2010

Jennifer J. Johnson¹, J.D. Radakovich¹, and Barry H. Dunn²

¹Texas A&M University-Kingsville ²South Dakota State University

J.D. Radakovich

- KRIRM Graduate
- Seedstock operation in Iowa
- Manager of the Hoodoo Ranch
- Jennifer Johnson
- KRIRM Student
- Cow-calf ranch in Colorado

Objectives

- Identify the Interrelated Components
 - Define efficiency
 - Industry segmentation conundrum
 - Genetic potential/environment interplayMetabolic weight
- Problem Solving Tools
 - Best measures of efficiency
 - Optimizing breeding and production systems Herd size
- Summary and Conclusions

The Definition of Efficiency

Two Aspects

- Biological efficiencyBeef produced to feed consumed
- Economic efficiency
 - Dollars returned to dollars invested

Industry Segmentation Conundrum

On the Ranch

- Early sexual maturity
- · High rate of reproduction
- · Low rates of distochia
- · Longevity
- Minimum maintenance requirements
- Ability to convert available energy into the greatest possible pounds of weaned calves

In the Feedlot

- · High growth rates
- · Later puberty
- Lower propensities to marble
- · Heavy mature weights
- Greater visceral mass

Biological traits supporting efficient use of the two resources [grazed forages versus harvested concentrates] are markedly different.

Notter, 2002

Practical Implications

- The ranch and feedlot segments are markedly different environments.
- Tradeoffs exist between growth and reproductive traits.
- The tradeoffs are based upon the biology and physiology of cattle.

Biological Efficiency

- Depends upon the interaction between
 - Genetic potential of the animal
 - The environment
 Availability and variability of feed resources

Maintenance Energy

High Maintenance

- High milk productionHigh visceral organ
- weight High body lean mass
- Low body fat mass
- High output
- High input

Practical Implications

- Low maintenance cows are not necessarily efficient cows.
- High maintenance cows are not necessarily inefficient.
- Maintenance energy alone is not a measure of biological *or* economic efficiency.

The Interplay Between Genetic Potential and the Environment

Practical Implications

- There is variation in genetic potential.
- There is variation in feed availability.
- Cows with low production potential are more biologically efficient in low feed environments and cows with high production potential are more biologically efficient at high feed environments.

Maintenance Energy and Calf Weight

- We analyzed a 165,000 head database
- As cow maintenance energy EPD increases cow weight increases
- As cow maintenance energy EPD increases calf weight increases
- 12 additional MCal/year in maintenance
 3 additional lbs weaning weight

<u>3 additional lbs</u> 12 additional Mcal/year

Practical Implications

- The increase in average cow size in the nation is a rational response to inexpensive feed.
- If a cow will get bred in her environment the additional maintenance energy requirements of the larger cow is more than paid for by the additional weight of her calf.

Metabolic Weight

			Equivalent Herd Size
Live Weight	Metabolic Weight	Animal Unit Equivalent (% of 1000 lbs)	(Baseline: One hundred 1000 lb cows)
800	150	85%	118
850	157	89%	113
900	164	92%	108
950	171	96%	104
1000	178	100%	100
1050	184	104%	96
1100	191	107%	93
1150	197	111%	90
1200	204	115%	87
1250	210	118%	85
1300	216	122%	82
1350	223	125%	80
1400	229	129%	78
1450	235	132%	76
1500	241	136%	74
1550	247	139%	72
1600	253	142%	70
1600	253	142%	70

Problem Solving Tools

Measuring Efficiency

Factors Affecting Feed Intake

- Body Condition Score
- Sex
- State of Production
- Age
- Quality of Forage
- Environmental Stress
 - Temperature
 - Parasites
 - DiseaseMud
 - Altitude
 - Altituu

Reproduction Reproduction

Practical implications

- Calf weight/cow weight is not a good measure of efficiency.
 Dinkel, 1978; Cartwright, 1979; MacNeil, 2005
 Reproduction is the overriding driver in
- efficiency and needs to be included in the measure.

Breeding and Production Systems

Problems with Culling for Efficiency

- Long generational intervals
- Small selection differential within a herd
- Culling based on traits that are low in heritability is ineffective
- Compared to bulls, individual cows contribute little to the overall genetic makeup of a calf crop

Bull Selection

Problems with Purebreds

- No breed excels in all traits
- Crossbreeding or composite populations can be used to optimize performance and match genetic potential with:
 - Climate
 - Feed resources
 - Consumer preferences

Crossbreeding

Production System

- Market End Point
 - Sell at weaning
 - Retain ownership
- Product
 - Commercial: \$/pound
 - Seedstock: \$/head

Practical Implications

- Compared to bull selection, culling is an inefficient way to improve efficiency.
- Heterosis is powerful.
- When and what are you selling?

Economic Analysis

- \$100/cwt calves. \$4 slide
- Calf weights based on 165,000 cow database
- 20% cull rate. \$0.50/lb
- 1 bull: 25 cows. \$2000/bull
- \$200/acre. 20 acres/Animal Unit (1200 lb cattle)
- \$433.34 fixed cost/head
- Texas 2008 SPA Data

Economic Analysis Continued

- To calculate net income
 - Fixed costs remained the same
 - Variable feed costs ignored
 - \$40 Non-feed variable cost/head
 - Adjustments
 - Cull cow revenue
 - DepreciationBulls

Equivalent Herd Size (Baseline: Total 500 1200 lb Live Pounds Weight cows) Weaned Net 1000 573 292,463 \$103,906 1200 500 278,034 \$95,793 445 1400 268,121 \$88,732

Live	Equivalent Herd Size (Baseline: 500 1200 lb	Total Pounds	Net	DOA	Non- land
1000	COWS)	202 462	Net		160/
1200	575	292,403	\$105,900	0.5%	15%
1400	445	268,121	\$88,732	0.4%	15%

Practical Implications

- Extremely Sensitive!
- As long as cow type is within given environmental and economic guardrails, size difference has little impact on profitability.

Wrap Up

- Identify the Interrelated Components
 - Define efficiency
 - Industry segmentation conundrum
 - Genetic potential/environment interplay
 - Metabolic weight
- Problem Solving Tools
 - Best measures of efficiency
 - Optimizing breeding and production systems
 - Herd size

The most efficient cow is the one with the highest milk potential that can, without reducing the percentage of calves successfully weaned, repeatedly produce a calf by bulls with the growth and carcass characteristics valued most in the marketplace. It is only managers – not nature or laws of economics or governments – that make resources productive.

Summary

-Peter Drucker, *Managing in Turbulent Times*

We don't need better cow sizes for our managers, we need better managers for our cow sizes.

