Genetics of Heifer Fertility

Collaborator S & Dr. Milt Thomas

Gerald Thomas Chair Lecture

Genetics of Heifer Fertility: Molecular Advancements in Reproduction: From hair to calves.

Outline:

I.History/Background

- **II. Discovery:** spots on chromosomes + genes
- III. Building research populations
- IV. International-sharing (AU-Beef CRC)
- V. Conclusions

Milt Thomas, Department of Animal and Range Sciences

Genotyping Results								
Gene Name	SNP_assayed	SNP with MAF >.10						
Growth Hormone Receptor (GHR) Glycosylation-Dependent Cell Adhesion Molecule 1 (GLCM1 Insulin-like Growth Factor 1 (IGF1) Insulin-like Growth Factor Binding Protein 6 (IGFBP6) Pregnancy-Associated Plasma Protein (PAPPA) Pro-Melanin Concentrating Hormone (PMCH) Signal Transducer and Activator of Transcription 2 (STA7 Signal Transducer of Activator of Transcription 6 (STAT6)	1 6 5 9 5 [2] 6 6 12							
Total 56 Ancestry Informative Markers	59	3						
Milt Thomas, Departme	nt of Animal and Ra	nge Sciences						

Least squares m

Age at First Calving, d Perfect, % Calving Interval, d Days to Calving, d Pregnancy Rate, %

Age at First Calving, d Perfect %

erfect, % Calving Interval, d Days to Calving, d

^bWithin a row me

Trait

$y_{ijklmm} = \mu + A_i + B_j + C_k + D_l + E_m + F_n + e_{ijklmm}$ Proc Mixed, $y_{ijkl} = phenotypic value of traits,$ $\mu = population mean or frequency,$ $A_i = fixed effect of SNP genotype or haplotype,$ $B_j = fixed effect of year of birth,$ $C_k = fixed effect of age of dam (BIF, 2006),$ $D_l = covariate of coefficient of ancestry,$ $E_m = covariate of coefficient of ancestry,$ $E_m = covariate of Julian birth date,$ $F_n = random effect of sire using the Z statistic to test if Ho: \sigma_w^2 = 0$ (Littlell et al., 1996), $e_{ijklmm} = random residual error.$	Mixed Model					
 y_{ijkl}= phenotypic value of traits, μ = population mean or frequency, A_i = fixed effect of SNP genotype or haplotype, B_j = fixed effect of year of birth, C_k = fixed effect of age of dam (BIF, 2006), D_i = covariate of coefficient of ancestry, E_m = covariate of Julian birth date, F_n = random effect of sire using the Z statistic to test if Ho:σ_w² = 0 (Littell et al., 1996), e_{ijklmn} = random residual error. 	$y_{ijklmm} = \mu + A_i + B_j + C_k + D_l + E_m + F_n + e_{ijklmm}$, Proc Mixed, Proc Glimmix					
e e _{ijklmn} = random residual error. Milt Thomas, Department of Animal and Range Sciences	 y_{ijkl}= phenotypic value of traits, μ = population mean or frequency, A_i = fixed effect of SNP genotype or haplotype, B_j = fixed effect of year of birth, C_k = fixed effect of age of dam (BIF, 2006), D_l = covariate of coefficient of ancestry, E_m = covariate of Julian birth date, F_n = random effect of sire using the Z statistic to test if Ho:σ_w² = 0 (f ittel et al. 1996) 					
Milt Thomas, Department of Animal and Range Sciences	• e _{ijklinn} = random residual error.					
	Milt Thomas, Department of Animal and Range Sciences					

ans : amo	ESE and lev ng SNP gen	els of signi otypes of P	ficance for fe APPA	rtility traits	Interac	tior	ı am
N	SN	P 1 PAPPA					
	11	12		P-value	L, d		
551	768 6 ± 36 8	787.9 ± 9.6	778 8 ± 11 2	0 9999	rva		Bran
551	53.8	56.3	53.7	0.8402	f	500	
441	500.1 ± 37.4^{a}	450.4 ± 9.6^{b}	421.2 ± 8.0^{b}	0.0595			
	448.8 ± 38.9^{a}	387.6 ± 10.3	360.9 ± 8.6^{b}	0.0289	Ē.		
640	77.8ª	85.8 ^b	89.6 ^b	0.0136	Calv		Bos
	SN	IP 2 PAPPA				300	
	11	12		P-value	р ú	500	Deab
548	773.2 ± 13.7	785.7 ± 9.7	781.9 ± 13.3	0.9999	ving		Бган
548	52.7	59.2	52.2	0.2823	2		
	403.4 ± 13.2^{a}	439.9 ± 8.6^{b}	445.1 ± 12.1^{b}	0.0484	Š	100	
	344.9 ± 13.8^{a}	379.4 ± 9.1^{b}	384.4 ± 12.7 ^b	0.0288	st		D -
640	90.6 ^a	87.9 ^b	86.3 ^b	0.0401	Day	200	Б0
out a co	mmon superscript d	liffer (P < 0.05)					
	Mi	lt Thomas, Departs	nent of Animal and R	ange Sciences			

Hypothalamic-expression of candidate genes for First Service Conception Transcriptomic expression difference from pre-pubertal to pubertal heifer Gene Name Proposed function or tissue (pre ---> pubertal) Extracellular matrix ADAMTS-like 1 down 4.89 Growth of female reproduction organs Endocytosis pathway SH3-domain GRB2-like2 down 23.97 Embryonic stem cells LOC781204 up 0.94 Unknown Centlein up 4.6 Centrosomal protein

up 8.27

Basonuclin 2

Stratified squamous epithelia Reproductive germ cells

The Cooperative Research Centre for Beef Genetic Technologies

Rachel's Current Conclusions

- A panel of markers will be chosen for commercialisation and integration into industry
- Little in common between breeds for reproduction traits
 - Factor of distance from causative mutation and linkage disequilibrium
 - Different breeds behave differently
- Require new unrelated populations for validation efforts

Conclusions

- Molecular Advancements in Reproduction: from Hair to Calves
- 1.Collaborations needed to move research forward. 2.Resequencing candidate genes can yield effective SNP for
- genotype to phenotype associations.
- 3.Genomic approaches reveal important chromosome regions. 4.Multi-breed???
- 5.Gap in research between whole genome approach (BV or Spot on Chromosome) and variation caused by alleles of a gene.

