
HOW THE NEXT GENERATION OF GENETIC TECHNOLOGIES WILL IMPACT 
BEEF CATTLE SELECTION 

Megan M. Rolf, Stephanie D. McKay, Matthew C. McClure, Jared E. Decker, Tasia M. Taxis, 
Richard H. Chapple, Dan A. Vasco, Sarah J. Gregg, Jae Woo Kim, Robert D. Schnabel and 

Jeremy F. Taylor 

Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA 

Abstract 

 Recent advancements in sequencing and genotyping technologies have enabled a rapid 
evolution in methods for beef cattle selection.  The past three decades has seen the advancement 
from restriction fragment length polymorphism (RFLP) markers that were low-throughput, time-
consuming and difficult to score to the newest high-density single nucleotide polymorphism 
(SNP) assays where marker genotypes are easily and inexpensively generated. The cattle genome 
sequence was published in 2009 and sequencing technologies have now advanced to the point 
that a complete genome can be resequenced to a relatively deep coverage for ~$30,000 on 
several different next generation sequencing platforms.  While a reference genome to align the 
reads is currently required for this process, with read lengths increasing with each software or 
chemistry update, de novo sequence assemblies will become routine in the very near future.  
Once the analytical methodologies are developed and become widely available, animal scientists 
will begin to use them to develop cost-effective diagnostics for use in beef cattle production 
systems.  As a result of this rapid expansion of technology, new tools will become available for 
beef producers to implement in the endeavor to efficiently produce high quality beef for today’s 
consumer.  Tools such as high-density genotyping assays and next generation sequencing 
instruments will help to shorten the generation interval, aid in the identification of causal 
mutations, increase the accuracy of EPDs on young sires and dams, provide information on gene 
expression and enhance our understanding of epigenetic and gut microbiome effects on cattle 
phenotypes. 

Introduction 

 There will be many changes in methodologies for the genetic evaluation of beef animals 
in the near future due to rapid technological advances.  These advances provide the momentum 
for change in the industry and will enhance our ability to produce beef efficiently in today’s 
marketplace.  The ability for beef producers to accurately select for genetically superior animals 
began over four decades ago when mixed model methods were first published by Henderson 
(1975).  The first national cattle evaluation (NCE) was performed in 1974 (Willham, 1993), and 
since then, models have evolved from single-trait sire models to the multi-trait animal models 
used today.  The next large step looming on the horizon will be the genomic revolution. 

Current technologies are beginning to shape the next generation of genetic evaluation.  
One of the most useful advances has been the public availability of a published genome sequence 
for beef cattle.  Baylor College of Medicine was the first to sequence the bovine genome and 
used a combination of bacterial artificial clone (BAC) methods as well as whole genome shotgun 
sequencing (The Bovine Genome Sequencing and Analysis Consortium, 2009).  The University 
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of Maryland quickly released their genome assembly based upon the sequences produced by the 
Baylor College of Medicine and this assembly has also been annotated (Zimin et al., 2009).  
These two assemblies differ slightly according to the methods used to assemble the sequence 
reads and the availability of both provides an invaluable resource for genomic studies in beef 
cattle. 

Microarrays which are used to study the expression profiles of genes within specific 
tissues are available in two different forms:  long oligonucleotide arrays (typically those spotted 
on glass slides that can be bought privately from researchers) and short oligonucleotide arrays 
(typically those commercialized by companies such as Affymetrix). Microarray technologies can 
allow the simultaneous profiling of very large numbers of genes and can be used to identify the 
pathways that are up- or down-regulated in different tissue types or disease states.  This allows 
the identification of the key genes that regulate the behavior of entire pathways and possibly 
even phenotypes.  These genes then become the targets of pharmocological intervention (drug 
targets) or even genetic manipulation. The greatest disadvantage of microarrays is that they can 
only query the genes for which probes are designed onto the array. Thus, we have to know the 
full complement of “genes” within a species genome to be able to design a comprehensive 
microarray, and unfortunately this is not the case even for humans, which have the most 
extensively studied genome. Microarrays also suffer from a loss of information in that, often, 
only probes are generated for one region of a gene and the gene may actually produce more than 
one type of transcript or protein. Finally, microarrays require quite a lot of technical skill and 
large numbers of replicates, normalization and dye swaps must be used to filter the true signal 
from the biological and technical noise.   

The first high-density and high-throughput genotyping assay was the 10K single 
nucleotide polymorphism (SNP) chip commercialized by Affymetrix (The Bovine HapMap 
Consortium, 2009).  However, the density of SNPs in this panel was insufficient for many 
genomic studies (including genomic selection (GS) and genome-wide association analyses 
(GWAS)) which led to the need for a higher density chip.  The Illumina BovineSNP50 chip was 
developed by a consortium of animal scientists using SNP discovery populations in Holstein, 
Angus and mixed breeds of beef cattle (Van Tassell et al., 2008) and provided much higher 
density (~50,000 SNPs per animal) than previous high-throughput genotyping assays 
(Matukumalli et al., 2009).  This assay has become the international standard for GS and GWAS 
in cattle and has even been applied to other species to resolve the evolutionary relationship 
among the horned ruminants (Decker et al., 2009; MacEachern et al., 2009), testing the number 
of SNPs needed to form a genomic relationship matrix (Rolf et al., 2010) and investigating the 
amount of introgression of cattle DNA into bison populations (Schnabel et al., unpublished data).  
While the Illumina BovineSNP50 assay has proven to be extremely useful for many different 
types of genomic studies, our current data suggest that even higher density assays will be needed 
to build models for GS with utility across breeds. 

New Technologies 

High Density SNP Genotyping Chips from Affymetrix and Illumina 

 Two new high-density SNP genotyping chips will be introduced in 2010.  The first is an 
assay from Illumina that will utilize the same bead technology and single base extension 

47



chemistry that is used for the current BovineSNP50 50K chip.  The Illumina assay will genotype 
approximately 800K SNPs per animal and should be available by the time of this BIF meeting.  
The second high density SNP chip will be marketed by Affymetrix and will also genotype 
approximately 800K SNPs.  This chip uses a different chemistry to the Illumina chip, but the 
ligation-based assay should result in almost the same call rate (% of genotypes called per 
sample) and the produced genotypes should be very high quality (low intrinsic error rate).  Best 
of all, the two companies will compete for business and the cost of these assays may end up as 
low as we are currently paying for the Illumina 50K assay!  With 50K SNPs available per 
animal, why do we need 800K?  There are several important applications and advancements that 
will be made possible with the addition of more SNPs.  The first is that SNPs will be distributed 
much more closely together in the genome.  With 50K SNPs in a genome of approximately 3 
billion base pairs, we would expect 1 SNP about every 60 Kb, but with 800K SNPs, we would 
expect 1 SNP approximately every 3.8 Kb.  This inter-marker distance provides much finer 
resolution for mapping the causal mutations that underlie variation within a trait and also allows 
a much greater opportunity for identifying SNPs that can predict genotype at these causal 
mutations when scored in animals of different or even mixed breed content for use in GS. 

 SNP discovery for the Illumina BovineSNP50 assay was performed using pools of DNA 
samples from Angus, Holsteins and a group of bulls sampled from the next most important US 
beef breeds.  As a result, there is a bias inherent in the assay towards SNPs that have high minor 
allele frequency in Angus and Holsteins and the assay performs slightly better for GWAS and 
GS in these breeds.  However, the SNP discovery for the design of the Illumina and Affymetrix 
800K panels was performed by sequencing a large number of animals from many different 
breeds (including both Bos taurus and Bos indicus) to minimize the ascertainment bias in SNP 
informativeness across breeds.  The end result should be a panel of SNPs that will have high 
average allele frequencies in almost all cattle breeds but will also contain many loci with low 
allele frequencies.  This is especially important for performing GWAS, since common SNPs 
cannot be strongly associated with rare or low frequency variants within a population.  The 
larger, more variable panel will contain some SNPs which are at low frequency in the population 
of interest to facilitate the detection of rare variants within that population. 

 Perhaps the greatest immediate value of the 800K chips will be the potential for 
implementing across-breed GS in the beef industry.  The real advantage of GS is its ability to 
simultaneously select for desirable combinations at all loci responsible for genetic variation in a 
trait using panels of closely linked markers.  Figure 1 provides a representation of the difference 
between traditional marker assisted selection (MAS) – the “single marker” tests that have been 
used in the industry to this point - and GS.  MAS typically involves selecting for desirable 
genotypes at a small number of loci, which are usually of large effect, as these loci are usually 
the easiest to identify in association or linkage analyses.  In contrast, GS allows the simultaneous 
selection for desirable genotypes genome-wide.  The 50K SNP chip has been shown to be 
effective for GS within breeds of cattle such as for Net Merit in Holsteins (VanRaden et al., 
2009).  However, the computation of molecular breeding values with high accuracies requires 
that a large numbers of animals with high accuracy EPDs be genotyped and the lack of a 
centralized DNA repository (such as are utilized by the dairy breeds) has limited the numbers of 
animals available for genotyping within each of the beef breeds.  Because of the shortage of 
DNA samples on animals with high accuracy EPDs, individuals from different breeds will need 
to be genotyped and the analysis performed across breeds.  The assumption here is that the 
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causal variants that create variation in traits are the same set of loci across breeds but they differ 
in frequency which leads to breed differences in the mean of these traits across breeds.  
However, SNP allele frequencies also differ across breeds and these differences in marker and 
causal variant frequencies mean that different SNPs are going to be more or less strongly 
associated with trait variation in different breeds. The density of SNPs on the 50K assay is not 
sufficient in an across breed analysis to arrive at a model for the prediction of molecular breeding 
values that will be highly accurate across breeds and the 800K chips will be vitally important for 
this application.  With a SNP every 3.8 Kb, there will be a sufficient SNP density to surmount 
these issues and obtain accurate molecular estimates of genetic merit across breeds by 
identifying the markers that are very close to the causal mutations and that have the same SNP 
allele on the chromosomes harboring the trait enhancing allele at the causal mutation across all 
breeds.  For example, in the Carcass Merit Project (CMP) 50K data for Warner-Bratzler shear 
force (WBSF) the correlations between SNP effects (Table 1) and molecular estimates of 
breeding value estimated from SNP effects produced within each of the breeds (Table 2) were 
low.  However, in the region from 44,000,728-44,208,978 nucleotides on chromosome 29 which 
harbors the µ-calpain gene, we scored 37 additional SNPs to the 6 SNPs present on the 
BovineSNP50 assay to produce a mean marker spacing of 4.8 Kb.  In the analysis of these data, 
we found one SNP was consistently associated with WBSF across breeds and that the same allele 
was predictive of increased tenderness across all 5 analyzed breeds.  

Next Generation Sequencing 

The ability to quickly, accurately, and inexpensively sequence the genomes of individual 
animals has the potential to revolutionize selection in beef cattle.  Recent technological 
advancements have made great improvements in the affordability and accessibility of genomic 
sequence data.  Two currently marketed platforms are the Illumina Genome Analyzer (or HiSeq 
2000) and ABI SOLiD.  Initially, read lengths for the Illumina and SOLiD were in the range 35-
36 base pairs (bp) with a cost per million bases of sequence of approximately $2 (Shendure and 
Ji, 2008).  However these platforms have been rapidly developed with improvements in 
chemistry and software allowing the Genome Analyzer to achieve reads of 125 bp and both 
technologies currently support paired-end reads in which each end of a 300 bp fragments are 
sequenced to a depth of 85 bp. More importantly, these instruments are now capable of 
producing up to 95 Gb of sequence in a single run of the instrument. After quality control 
processing of the data and mapping fragments to a genome assembly, this results in as much as a 
15X coverage of animal genome.  Two such runs at a cost of less than $30,000 will produce 
sufficient sequence data to allow a de novo assembly of an animal’s genome sequence. 

The data obtained from next generation sequencing has many applications.  One 
application is the identification of the actual expression level of all of the genes that are 
expressed in essentially any tissue or animal.  RNA sequencing (RNA-Seq) allows the novel 
assembly of a transcriptome (the set of expressed genes) for any tissue and provides quantitative 
data to identify differences in gene expression between two samples.  The approach also 
identifies if alternative exons of a gene are used to create different forms of a protein in different 
tissues or animals and also produces the DNA sequence of each transcript.  Thus any sequence 
differences (SNPs within coding regions) that result in amino acid changes could produce 
phenotypic variation within a trait.  RNA-Seq produces estimates of the actual number of 
transcripts of a particular mRNA from the counts of the number of reads that map to each gene.  
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The top panel in Figure 2 shows the number of sequence reads observed for the PRP gene’s 
messenger RNA in the brain of a dog.  The figure shows that there is a large number of sequence 
reads observed for PRP (location indicated by the box) and another mRNA shown to the right of 
PRP. 

Both RNA-Seq and genomic DNA sequencing data provide insight into novel and causal 
polymorphisms within an individual.  The bottom panel in Figure 2 shows a C/G SNP 
polymorphism identified in the PRP gene from the RNA-Seq data, which results in the change of 
the amino acid at this position from aspartic acid (D) to glutamic acid (E).  The discovery of 
mutations which actually cause variation within traits will become increasingly important and 
their knowledge will allow testing across breeds which will drastically reduce the number of loci 
that need to be tested to explain variation within a trait.  If we know the causal mutations, we 
only have to test for those mutations, rather than using 800K SNPs to estimate the effects of 
these variants.  This will result in the development of more affordable, accurate panels of SNPs 
that work across breeds.  It will also suggest the genes that should be screened across populations 
in the endeavor to understand all existing naturally occurring variation which may have 
important phenotypic effects.  Information will also be gained that will suggest drug targets or 
targets for genetic modification, if this technology is deemed acceptable for use in animals by 
consumers. 

 A novel application of this technology that is becoming increasingly important in the 
human and mouse communities is the sequencing of gut microbiomes.  Most work in humans 
and mice to this point has focused on profiling the 16S ribosomal RNA (rRNA) gene to identify 
the microbes present in the gut using long-read and low throughput (traditional Sanger) 
sequencing methods.  However, this type of research has recently expanded to utilize next 
generation sequencing technologies (Qin et al., 2010).  The study of “gut microbiomes” and their 
interactions with the genotype of the host is important because previous studies have shown that 
there is substantial genetic diversity in the species present within the gut microbiome (Li et al., 
2009; Turnbaugh et al., 2006, 2009) and that the gut microbes have a significant impact on 
energy harvest and obesity in humans and mice (Backhed et al., 2004).  One study observed that 
when germ-free mice were inoculated with a gut microbiome from either a lean or an obese 
individual, the mice that received the gut flora from the obese mice gained more weight than 
their counterparts which received the gut flora from the lean mice (Turnbaugh et al., 2006).  
Because of the way that nutrients (especially those from forages) are harvested in ruminants, it is 
likely that gut microbiomes have an even greater impact on energy metabolism than in human or 
mouse.  Furthermore, the composition of these gut populations may also be related to feed 
efficiency, methane/greenhouse gas emissions and manure production; thus, it is imperative that 
we explore whether the host genotype has an effect on the composition of the gut flora, and if so, 
select for favorable gut populations.  Currently, these relationships are poorly understood, and 
the host interactions that may be under nuclear genetic control are either confounded with 
additive genetic effects (which would be desirable) or are being placed in the residual component 
of our genetic models, where they are not selectable. 

Epigenetics 

 Epigenetics is a field of rising importance in genetics and genomics.  Epigenetics 
involves DNA and histone modifications which can influence gene expression and thus the 
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genetic variation in a trait, even if animals have identical genotypes and DNA sequence.  Some 
examples of these modifications include imprinting, X-inactivation, gene silencing and 
embryonic reprogramming (Sellner et al., 2007).  Epigenetic effects such as methylation involve 
the addition of methyl groups to cytosines and if these occur in the promoters of genes, 
transcription machinery can be blocked from binding to the DNA.  DNA methylation is 
influenced by both the genetics and environment of the individual, but has been shown to be 
stably transmitted from parents to offspring for several generations.  Once the bovine epigenome 
(the set oft nucleotides that are methylated in the DNA that is present across different tissues) has 
been characterized, there is the potential to select or perhaps even induce favorable effects and 
include this information into breeding programs.  Most of the new high-throughput sequencing 
instruments can elucidate whether nucleotides are methylated (however the new sequencer from 
Pacific Biosystems can detect methylation as a by-product of sequencing by measuring the time 
it takes to incorporate a new base while reading genomic sequence), which will allow rapid 
advances into the understanding of these effects and their influence on phenotypes in beef cattle.   

Finally, technologies such as ChIP-Seq (which allows determination of which proteins, 
such as transcription factors, interact with DNA to influence gene expression and also allows 
examination of epigenetic chromatin modifications) and Bis-Seq (massively parallel sequencing 
of bisulfate-treated DNA, which converts unmethylated cytosines to uracils) are powerful new 
tools for providing insight into the nature and extent of epigenetic modifications within the 
genome. 

Conclusions 

The fantastic pace at which new technologies are being developed to study the genome 
make it an exciting time in the beef industry for producers and scientists alike.  High-density 
genotyping assays will soon revolutionize the way we conduct genetic prediction and whole-
genome sequencing of animals and their gut populations along with epigenetic profiling will lead 
to new tools to ethically and efficiently provide high quality beef that meets consumer demands 
in an increasingly competitive marketplace. 
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Table 1:  Correlation coefficients between SNP effects estimated for Warner‐Bratzler shear force (WBSF) 
between five different breeds of animals involved in the NCBA sponsored Carcass Merit Project.  The 
number of animals used in the analysis are shown on the diagonal. 

WBSF SNP 
Effects 

ANGUS  CHAROLAIS  HEREFORD  LIMOUSIN  SIMMENTAL 

ANGUS  651  0.0267  0.0351  0.0134  0.0260 

CHAROLAIS    695  0.0135  0.0019  0.0081 

HEREFORD      1095  ‐0.0196  0.0251 

LIMOUSIN        283  ‐0.0047 

SIMMENTAL          516 

 
Table 2:  Correlation coefficients between molecular estimates of breeding value (MBVs) estimated from 
SNP allele substitution effects for Warner‐Bratzler shear force (WBSF) in five breeds of animals involved 
in the NCBA sponsored Carcass Merit Project.  Elements in each row represent correlations between 
MBVs computed using the SNP effects for the breed in that row with MBVs computed for the breed in 
that row using SNP allele substitution effects for the breed in each column.  

WBSF 
Angus SNP 
effects 

Charolais SNP 
effects 

Hereford SNP 
effects 

Limousin SNP 
effects 

Simmental SNP 
effects 

Angus MBVs  1.0000  0.2229  0.2500  ‐0.0625  0.0661 

Charolais 
MBVs 

0.0442  1.0000  0.0407  0.0035  0.0715 

Hereford MBVs  0.2997  0.1100  1.0000  ‐0.3259  ‐0.0068 

Limousin MBVs  ‐0.0220  ‐0.0391  ‐0.1794  1.0000  ‐0.1875 

Simmental 
MBVs 

0.1502  0.1624  0.1160  ‐0.0255  1.0000 
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Figure 1:  Depiction of traditional marker assisted selection (MAS) versus genomic selection 
(GS).  The box represents the genome of an animal and the circles represent variation within 
the genome.  The size of the circles represents the amount of genetic variation explained at 
that locus.  The white circles represent variation that is not being selected due to a lack of a 
suitable closely‐linked marker and the filled circles represent the variation which is under 
selection using each of the approaches. 
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Figure 2:  Dog RNA-Seq data in a NextGene viewer showing the PRP region.  The top panel shows the number of copies on 
the  Y axis and chromosomal position on the X axis.  The center panel shows the reference sequence compared to the sample 

sequence assembly and any detected amino acid change.  The bottom panel shows the tiled sequences.  A SNP can be 

observed and is highlighted in the tiled sequence. 
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