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Separate training population approach

Define the type of training data you will work with

Every animal will be genotyped with a specific panel
Every genotyped animal will have a phenotype

Manageable training data set sizes

Work with sophisticated models which are computationally
intensive in the training phase
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Combined training/evaluation approach

Train on the entire data set

Use the most current set of phenotypic data

Simultaneously manage all of the genotypic and
phenotypic data

Updating a database with a 50K/800K/Sequence genotype
for an animal
Running an evaluation using the raw genotypes

Computational considerations will drive the type of models
that can be used
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Combined training/evaluation approach

Using the evaluation population for training
Reduces the horizontal separation

Training is weighted towards animals with the most
phenotypic information
Genomic information is most useful for animals with the
least phenotypic information

Vertical separation remains
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First Phase
1 Training on phenotype based EPDs
2 Produce first generation MBVs
3 Evaluations to produce genomic enhanced EPDs based on

first generation MBVs

Second Phase

Current EPDs now contain genomic information
Train on genomic enhanced EPDs

Drift to producing MBVs that do good job of predicting
the previous MBV?
Need for phenotype based EPDs for training as we move
forward
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Correlated Trait Models
Large number of traits

More equations
Slower convergence

Large genetic correlation matrix

High genetic correlations between MBVs
Estimation of a large number of parameters
Genetic covariance may not be well behaved

Heritabilities close to 1

Software has been tuned for moderate heritabilities
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G11 G12

G21 R−1
2 + G22
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û2
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=
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R−1
2 y2



Poorly conditioned matrix

Convergence rates are sensitive to how the model is
parameterized
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Linkage relationships

Change between breeds
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Change over generations

Same genotypes
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