

Background

- Beef production is 4th largest US manufacturing industry with a \$71b retail equivalent value in 2006
- (www.ers.usda.gov)
- Genetic improvement of 1% would contribute \$0.7b annually to the US economy
- Yearling weight genetic merit has 0.5% pa to increase 120
 Ib from 1985-2007
 - Contributed to improved efficiency by dilution of maintenance but has probably not changed net efficiency

Dilution of Maintenance

- Suppose 700 units of feed in a cow-calf system produce a weanling
- And 300 units of feed in the feedlot system finish it to 1,000 lb

$$Efficiency = \frac{output}{input} = \frac{1000}{700 + 300} = 1.0$$

Dilution of Maintenance

- Suppose 700 units of feed in a cow-calf system produce a weanling
- And 300 units of feed in the feedlot system finish it to 1,000 lb

$$Efficiency = \frac{output}{input} = \frac{1000}{700 + 300} = 1.0$$

- Suppose the feedlot finishes to a heavier weight
- And 600 units of feed in the feedlot system finish it to 1,400 lb

$$Efficiency = \frac{output}{input} = \frac{1400}{700 + 600} = 1.08$$

Efficiency = $\frac{output}{input} = \frac{1400}{700 + 500} = 1.15$

Dilution of Maintenance

- Suppose 700 units of feed in a cow-calf system produce a weanling
- And 600 units of feed in the feedlot system finish it to 1,400 lb

$$Efficiency = \frac{output}{input} = \frac{1400}{700 + 600} = 1.08$$

- Now suppose the feedlot finishes to the heavier weight in less time
- And 500 units of feed in the feedlot system finish it to 1,400 lb

$$Efficiency = \frac{output}{input} = \frac{1400}{700 + 500} = 1.17$$

Dilution of Maintenance

- Can be obtained by finishing to heavier weights
- Can be obtained by faster growth rates
- Can be achieved by any technology that reduces cow-calf feed requirements
 - Cow size, replacement rate, reproductive success

Weaber

Net Efficiency

- Net efficiency measures the amount of feed over and above maintenance required to produce a unit of weight gain
 - Maintenance requirement of an animal is the amount of feed required to sustain the animal with no net production
 - No weight gain or weight loss in a feedlot animal
 - Feed tables are based on average requirements for maintenance and average values for marginal efficiency
- There is individual animal variation in both maintenance requirements and net efficiency of gain
 - RFI and RADG result from differences in net efficiency and/or maintenance

Αn	ทบล	al N	atio	ona	al Co	ost S	ริลง	inas
				•			.	95
ie of	a əlh r	er das	ı redii	ction	in Fl r	n char	nae in	production
ic oj i	x 210 p	ici uuj	rrcuo	CLIOII	,,,,,	io criar	ige iii	production
,		,			Reduced	Feed	%	Total
			Dave					Feed
Out	1h							Cost
Wt.	Gain	ADG	Feed	RFI			Mix	Savings
				Calf F		.,		
1250	650	3.5	186	0.0	0			
1250	650	3.5	186	-2.0	-372	(54.72)	34	\$ 502,620,656
1230				Voarlin	a Eode			
	E2E	4.0		Yearlin				
1300	525	4.0	131	0.0	0			
	525 525	4.0 4.0				(38.67)	66	\$ 689,539,820
	Je of (Out Wt.	Je of α 2lb p Out Lb. Wt. Gain	ue of a 2lb per day Out Lb. Wt. Gain ADG	Ue of a 21b per day redu Days Out Lb. On Wt. Gain ADG Feed	ue of a 2lb per day reduction Days Out Lb. on Wt. Gain ADG Feed RFI Calf f	ue of a 2lb per day reduction in FI, r Reduced Days Feed Out Lb. On Intake Wt. Gain ADG Feed Rfi Calf Feds	Ue of a 2lb per day reduction in FI, no char Reduced Feed Days Feed Cost Out Lb. on Intake Savings Wt. Gain ADG Feed RII (lb) S/hd Calf Feds	Days Feed Cost of

Greedy Improvement

 Adopt management and selection strategies IN ORDER TO reduce or dilute maintenance costs AND exploit improvements in net efficiency

Background

 Feed Intake (FI), required along with output production measures to characterize efficiency, is heritable but not cost-effective or practical for routine measurement across the national spectrum of seedstock and commercial cattle

Cattle Competing with Us

- Humans and livestock can compete for feed grains
- Most cows (ruminants) graze rangeland unsuitable for food crops
 - Grazing this land more than doubles the area used to produce food
- 25M feedlot animals are fed from land that could produce biofuel or human crops
 - Feedlot animals may be more carbon efficient
 - 140 d vs >365 d feeding dilutes maintenance
 - Genetic improvement would reduce competition with humans an reduce environmental impact per unit of produced beef

Long-term Goal

- The long-term goal is to sustainably reduce feed resources required to produce beef via the rapid development and deployment of novel nutritional, genomic and genetic improvement technologies
- The team will strengthen the international competitiveness of US agriculture and enable increased food production via
 - diversion of animal to human food or energy crops
 - increasing production of animal protein without additional feed inputs
 - reducing the greenhouse gas footprint of beef production systems

Research Objectives

 Assemble DNA samples, individual FI, growth and carcass composition data for 8,000 animals representing 8 major beef breeds

All investiaato

Research Objectives

- Genotype 2,400 animals from 6 breeds with high-density 700k genotypes
 - Develop & validate across-breed genomic predictions
 - Another 1,400 animals already have 50k genotypes
 - Imputed up to 700k

GeneSeek, Taylor, Garrick

Research Objectives

- Sample superior and inferior animals for FE from groups of >300 Angus, Hereford, Gelbvieh or composite cattle to study:
 - Green-house gas emissions
 - Gut microbiome composition
 - Tissue-specific gene expression/gene networks (2 breeds)
 - Liver, small intestine, pituitary, hypothalamus, adipose 6 hi 6 lo

-Fahrenkrug, Neibergs, Seabury, Johnson, Beever

Research Objectives

- Use 18oX bovine genome sequence representing >45M polymorphisms to fine-map QTL from whole genome analysis
 - Likely contain causal variants
 - Targeted 1,500 new SNPs genotyped in 2,000 animals

Seabury

Research Objectives

 Develop and maintain DNA, RNA and phenotype repositories for data obtained through project funding and provide public access to these samples

Taylor, Neibergs

Research Objectives

- Examine the roles of mitochondrial complex I and III proteins on FE of 600 animals from Angus, Simmental and Gelbvieh breeds
 - Goal to find a metabolic proxy for FI measurement

Kerlev. Johnson

Research Objectives

- Perform grain x distillers, grain x forage and grow x finish feeding regimen interaction experiments on 900 Charolais steers & heifers with individual animal FI data
 - 400 of these will have 700k genotypes

Hansen Shike Faulkner

Research Objectives

 Provide research experiences for undergraduates at co-PD Universities to attract these to grad school and prepare the next generation of welltrained, diverse scientists with expert skills and breadth of knowledge to address sustainable beef production

All investigators

Extension Objectives

- Develop and deliver to a national industry-wide stakeholder audience the resources, tools, information and educational activities that will enhance their understanding of the:
 - importance of FE to farm economics and resource use
 - emerging technologies for genetic improvement in FE and component traits (FI, growth, carcass composition)
 - options to use marker assisted management (MAM) systems to sustainably improve profitability

Loy, Spangler, Faulkner, Weaber

Extension Objectives

 Conduct a field demonstration project to demonstrate the utility of genomic EPDs for FE and component traits and "push" the technology into the beef industry

Spangler

Extension Objectives Deploy genomic selection based on genomic EPDs for FE and component traits to the international beef industry

