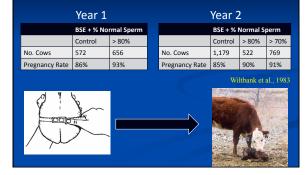


Annual Cost of Early Embryonic Loss to U.S. Beef Industry Beef cows & heifers 20 d later pregnancy calve 20 d later 40,000,000 x 25% 10,000,000 **Dairy Industry** calf gain lost lbs lost gain <u>x 3 lb/d</u> 600,000,000 Loss: \$ 600,000,000 6.25% 40 d later pregnancy 787,500,000 lbs 150,000,000 lbs lost gainx \$1.10/lb 60 d later pregnancy 1.5% \$ 866,250,000 LOSS IS TO COW/CALF PRODUCER!



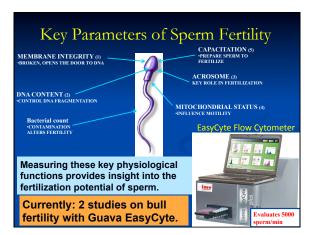
Importance of Bull Fertility on Breeding Season Pregnancy Rate

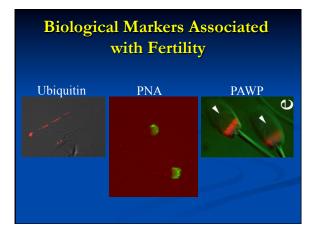
Effect of Social Dominance on Percentage of Calves Sired					
Bull	Year 1	Year 2	Year 3	Year 4	Year 5
A Age Percent	10	11	12	13	14
Age Percent	4	5	6	7	8
C Age Percent	3	4	5	6	7
Age Percent	2	3	4	5	6
- or cont					

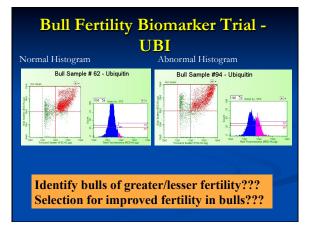
Effect of Social Dominance on Percentage of Calves Sired

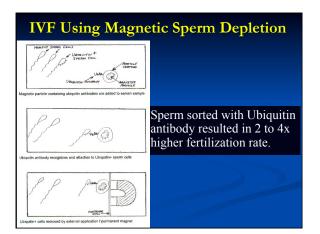
Bull	Year 1	Year 2	Year 3	Year 4	Year 5
🔺 Age	10	11	12	13	14
Percent	70				
Age	4	5	6	7	8
Percent	17				
C Age	3	4	5	6	7
Percent	7				
Age	2	3	4	5	6
Percent	6				

Effect of Social Dominance on Percentage of Calves Sired

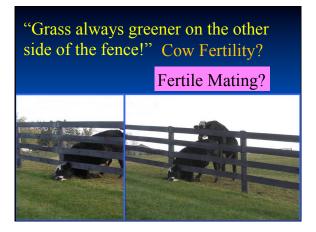

Bull	Year 1	Year 2	Year 3	Year 4	Year 5
A Age	10	11	12	13	14
Percent	70	76	12	0	0
Age	4	5	6	7	8
Percent	17	18	63	73	<mark>25</mark>
C Age	3	4	5	6	7
Percent	7	6	12	13	63
Age	2	3	4	5	6
Percent	6	0	12	15	12
✓ What if the dominant bull is sterile?					?

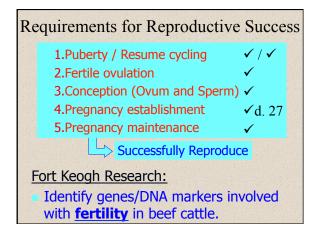

Bull Fertility Measures – Fort Keogh


- Annual breeding soundness exams (BSE) on all bulls.
- Puberty exams at 10.5 mo of age (n = 1,100).
 - Phenotypes for genomics
 - Sperm morphology traits
 Heritability
 - Puberty

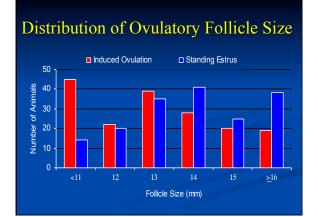


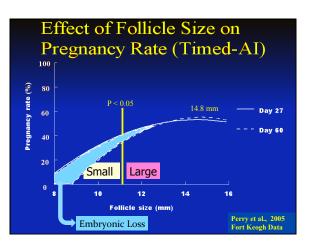
Heritability of Bull Fertility Traits				
Trait	h ²			
Scrotal circumference, cm	0.67 ± 0.09			
% Normal	0.18 ± 0.07			
% Knobbed acrosome	0.02 ± 0.04	Head of Epididymis		
% Head defects	0.00 ± 0.05			
% Distal midpiece reflex	0.01 ± 0.04			
% Dag defect	0.50 ± 0.10			
% Bowed midpiece	0.19 ± 0.07			
% Proximal droplets	0.37 ± 0.08			
% Distal droplets	0.09 ± 0.06	A start		
% Coiled principle piece	0.07 ± 0.05	Testes Tail of		
% Bent principle piece	0.18 ± 0.08	Epididymis		
Gross motility score	0.20 ± 0.07			
% Progressive motility	0.20 ± 0.08			
Selection for improved sperm morphology should increase fertility!				



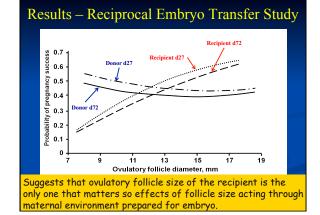


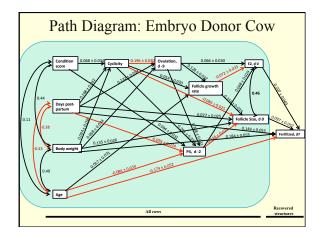
ASSAY	Microscope	CASA	Easy Cyte
Motility	++	+++	-
Concentration	-	+++	+++
Viability	+	+	+++
Acrosome	+	+	+++
Mitochondria	-	-	+++
Capacitation (Ca)	-	-	+++
DNA fragment	-	-	+++
Bacterial count	-	-	+++
Morphology/physiology	+/-	++/-	++/+++
Objectivity	+	++	+++

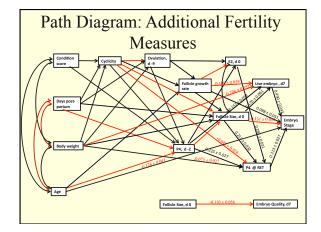


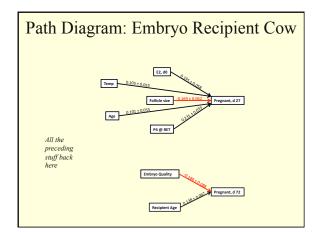

Identification of New Phenotypic Traits involved in Fertility

Beef Cow / Heifer

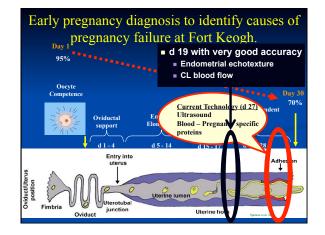

 Used AI to obtain numerous measures & keep bull fertility constant

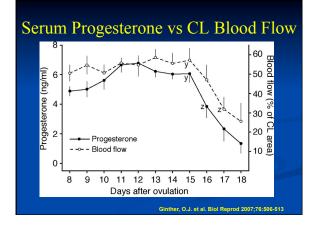


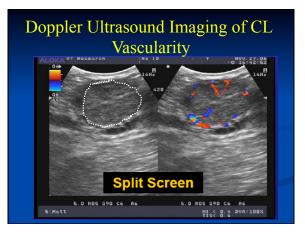


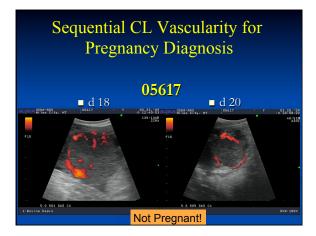


Fort Keogh Reciprocal Embryo Transfer					
Study (2007-09)					
Goal: Determine how size of the ovulatory follicle affects pregnancy establishment and maintenance. Does it affect oocyte maturation and/or viability? Does it affect the maternal reproductive tract in assisting pregnancy maintenance/establishment?					
Treatment groups	Treatment groups GnRH-induced follicle size				
No of	GrikH-indu	ced tomcie size	_		
transfers	Donor	Recipient	Purpose		
	Donor Small	Recipient Small	Purpose Negative control		
transfers					
transfers 71	Small	Small	Negative control		
transfers 71 111	Small Small	Small Large	Negative control Effects 1° of oocyte origin*		

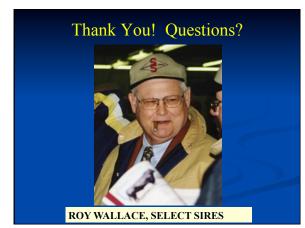


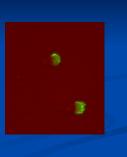

NOTE: Cows were not used if they exhibited estrus.


Take Home Message – RET Study


- Fertility is much more complicated than we hope.
- The most important variable related to pregnancy success was estradiol concentration at the time of breeding.

If using synchronization and timed AI, insemination must coincide with expression of estrus.




Ubiquitin (UBI)

- Proteolytic marker peptide that binds to the surface of defective sperm.
- Ubiquitination causes immobilization and/or resorption of these defective sperm during epididymal passage.
- increased binding of anti-ubiquitin antibodies to the sperm surface reflect the occurrence of abnormalities

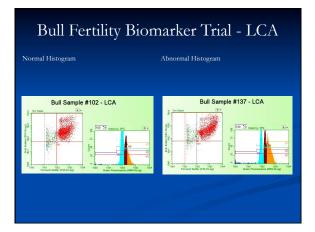
Peanut Agglutinin (PNA)

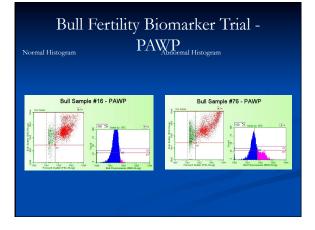
- High affinity/strong specificity for disaccharides with terminal galactose, especially the D Gal α (1,3) D GalNAc disaccharide
- Binds to the outer acrosomal membrane (OAM), exposed during the acrosome reaction

Lentil Lectin (LCA)

- Shows a strong specificity to d-glucosyl and dmanosyl residues
- Binds to the acrosome in normal sperm, whole surface in defective sperm

Postacrosomal Sheath WW-Domain-Binding Protein (PAWP)


- Resides exclusively in the post-acrosomal sheath (PAS) region of the sperm head perinuclear theca (PT) and is expressed and assembled in elongating spermatids
- Promotes meiotic resumption and pronuclear development during fertilization
- Abnormal sperm may have unusually high levels of this protein



Bull Fertility Biomarker Trial

- \square n = 162 samples
- Samples analyzed via UBI, PNA, LCA, PAWP
- Flow cytometry via GUAVA
- Analysis performed via Excel and SAS

Bull Fertility Biomarker Trial - PNA Normal Histogram			
Bull Sample # 107 - PNA	Bull Sample # 116 - PNA		

