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Introduction 

Molecular markers can be used to predict genomic breeding values (DGV), termed genomic 

prediction, by exploiting population-wide linkage disequilibrium between QTL and markers 

distributed throughout the genome as first proposed by Meuwissen et al. (2001). This process 

involves using a population of genotyped and phenotyped individuals as a reference population 

or training set (TS) to estimate DNA marker effects which can be used to predict DGV in 

another genotyped population. DGV may be combined with parent average information to 

create genomic estimated breeding values (GEBV) using selection index methodology 

(VanRaden et al. 2009, Lund et al. 2009, Guo et al. 2010) to improve the accuracy of genomic 

prediction. To confirm genomic prediction accuracy, validation studies are generally performed 

using a separate phenotyped and genotyped population (Hayes et al. 2009a, Luan et al. 2009, 

Su et al. 2010); however, estimates of genomic prediction accuracy in the validation population 

will depend on its genetic relationship to the TS (Habier et al. 2007, Habier et al. 2010). 

Therefore, validation populations should be selected such that they are representative of the 

target population in which genomic selection will be applied. The application of genomic 

prediction enabled selection, or genomic selection (GS), represents a challenge for the U.S. beef 

cattle industry, as it has fewer populations suitable for use as TS and is composed of many sub-

populations of varied breed composition, in terms of number of breeds, levels of admixture, and 

distribution across industry sectors. As genomic predictions become available for application 

within certain influential beef breeds (e.g. Angus: Northcutt 2011, Saatchi et al. 2011; and 

Hereford: AHA 2011), lingering concerns are the usefulness of single breed prediction to 

admixed commercial populations and the potential for accurate across-breed genomic 

prediction. To address this question, it is necessary to review the progress made in the 

development and implementation of genomic selection and detail the factors which contribute 

to genomic prediction accuracy, both within and across populations. 
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Review of literature 

Factors affecting genomic prediction accuracy 

The accuracy of genomic prediction depends on several parameters (Hayes & Goddard 2008, 

Goddard 2009): the extent of linkage disequilibrium (LD), TS size, the heritability of trait, and 

the distribution of QTL effects. Goddard (2009) expressed the accuracy of genomic prediction 

for an individual without as phenotype (r) as:  , with  where 

σe
2 is the residual variance and σu

2 is the genetic locus variance, N=TS size, and . The 

genetic locus variance is defined as  with heritability h2,  where Ne is the 

effective population size, and Me is the effective number of segregating chromosomal segments. 

While Goddard (2009) approximated Me as 2NeL/ln(4NeL) where Ne is defined as previously 

and L is the length of the genome in Morgans, Clark et al. (2012) found that this definition 

overestimated baseline genomic prediction accuracy and that defining Me as 2NeL was more 

consistent with simulation results.  

 

Figure 1 depicts the relationship between TS size (N) and genomic prediction accuracy based on 

this definition for a theoretical trait with σe
2 equal to 1, L equal to 30, Ne equal to 200 (black) or 

300 (gray), and heritability h2 equal to 0.10 ( ), 0.30 ( ), or 0.60 (o). To illustrate the effect of 

increasing TS size, accuracy increases 0.05-0.10 when TS increases from 2,000 animals to 3,600 

animals, depending on the effective population size and the heritability of the trait. This is 

consistent with results from Holstein populations, using an expected Ne of 64-90 (de Roos et al. 

2008). VanRaden et al. (2009) reported that genomic prediction accuracy increased linearly 

with increased TS size in the range of 1,151-3,576 Holstein bulls (specifically, accuracy increased 

from 0.35 to 0.53 for a trait with a heritability of 0.2). Hayes et al. (2009a) reported that in 

Genetic Australia’s 2003 progeny test, a low heritability trait with fewer TS records (332) 

generated lower accuracies (BLUP 0.42, Bayes A 0.37).  This is also consistent with the results of 

Saatchi et al. (2011) in U.S. Angus data using 698-3,231 records per trait; an average estimated 

genomic prediction accuracy of 0.41, assuming an Ne of 200 for U.S. Angus cattle, is consistent 

with the published estimate of 0.44 derived using a K-means clustering approach for validation. 

Using a study performed in layer chickens, genomic prediction accuracy increased with 

increasing TS size across five generations; however, increase in accuracy was not linear, with the 

largest gains attributed to increasing TS from 295 to 618 animals, and more modest gains from 

increasing up to 1,563 genotyped animals (Wolc et al. 2011). 
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Marker density, linkage disequilibrium, and genetic relationship 

For genomic prediction, it is important to implement careful management of informative SNP 

markers and genotype density, genotyping sufficient markers to maximize genomic prediction 

accuracy considering that some proportion of markers will be removed during quality control. 

At this time, the most common array used in genomic prediction analyses in cattle is the 

Illumina Bovine SNP50 BeadChip (Bovine SNP50; Matukumalli et al. 2009; Illumina Inc., San 

Diego, CA), which became commercially available in 2008 and contains up to 58,336 SNP 

markers, depending on version number. However, most studies using this assay do not consider 

all of these markers to be informative in a given population or breed. For example, markers may 

be excluded from analysis if they are unreliable (e.g. exhibit frequent parent-progeny conflicts, 

have low call rates, etc.), redundant (e.g. collinear with other SNP markers), or exhibit minor 

allele frequency (MAF) that is too low (usually in the range of 0.01-0.05). For example, using 

Holstein, Jersey, and Brown Swiss cattle genotypes, Wiggans et al. (2010) concluded that, of the 

markers on the Bovine SNP50, 16.6% were unreliable, 3.0% were redundant, and an additional 

6.0% had low minor allele frequency (<0.01) in these breeds, leaving only 75% of the markers 

genotyped considered informative for genomic analyses. The number of unreliable markers is 

assay- and sample quality-dependent, and the number of redundant and low MAF markers will 

depend on genetic variability in the population of interest relative to marker density. The 

proportion of low MAF SNP in the Bovine SNP50 reported by Wiggans et al. (2010) is similar to 

estimates reported in other cattle breeds. McKay et al. (2007) reported that low MAF SNP 

(<0.05) represented 5-20% of markers surveyed in 8 cattle breeds (Nelore, Brahman, Japanese 

Black, Angus, Limousin, Dutch Black and White Dairy, Holstein, and Charolais). Using 

combined criteria of call rate (≥90%), MAF (≥1%), and Hardy-Weinburg equilibrium Chi-square 

statistic ( 300; 1 df) for autosomal and pseudoautosomal markers, Saatchi et al. (2011) excluded 

9,360 of 54,442 loci (17%) for genomic analysis of 3,570 Angus cattle, leaving approximately 

~5K fewer markers than was estimated to be necessary for genomic analysis of Australian Angus 

cattle (de Roos et al. 2008). 

 

Ideally, high density genotypes used for genomic analysis should include markers that are in 

consistent linkage disequilibrium (LD) with QTL influencing a trait of interest. In larger or more 

diverse populations, higher density genotypes and greater TS are required to accurately estimate 

marker effects (de Roos et al. 2009, Hayes et al. 2009b, Ibáñez-Escriche et al. 2009). Using 33 

microsatellite markers, Huang et al. (2008) estimated that only 11% of the total genetic variation 

was shared between 16 breeds of Scottish, French, Spanish, or Alpine geographic origin. Using 
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50K density, reports of the extent of LD between markers (and between markers and potential 

QTL) has varied, depending on population. Meuwissen et al. (2001) demonstrated the potential 

for highly accurate genomic prediction assuming an r2 (Hill & Robertson 1968) equal to 0.2, 

which is inconsistent with the values reported in linkage disequilibrium studies of multi-breed 

cattle populations. Kelly et al. (2008) reported that in a population of 374 multi-breed beef 

cattle (crossbred cows bred to purebred sires derived from Angus, Simmental, Limousin, 

Charolais, and Piedmontese breeds), average gap size between informative SNP on the Bovine 

SNP50 was 58kb, and to achieve LD similar to that assumed by Meuwissen et al. (2001), average 

gap size would need to be 30-35kb (with resultant r2 0.21±0.26). This is similar to the findings 

of Lu et al. (2009), who reported that in a population of 60 Angus, 43 Piedmontese, and 400 

crossbred beef cattle, the average gap size was 60kb with highly correlated phase within 60kb 

regions between breeds (r=0.78-0.82) and rapid LD decay as distance between markers 

increased (average r2 drops from 0.31 for markers 0-30kb distant to 0.15 for markers 60-100kb 

distant). McKay et al. (2007) reported that while markers from 0-5kb distant ranged in r2 from 

~0.3-0.6 depending on breed, average r2 for inter-marker distances of 5-100kb declined to 

~0.15-0.2. In Dutch and Australian Holstein-Friesian, Australian Angus, and New Zealand 

Friesian and Jersey cattle, de Roos et al. (2008) reported average r2 of 0.35 for inter-marker 

distances of 0-10kb, which declined to 0.22 for 20-40kb and 0.14 for 40-100kb. To achieve 

average r2 equal to 0.2, de Roos et al. estimated that 43-75K SNP (50K for Australian Angus) 

would be required within breed and ~300K SNP for across-breed analysis, which is substantially 

more than is available using the Bovine SNP50.  

 

This issue may be corrected by using higher density genotyping arrays. Two HD arrays have 

been released for bovine genomics analysis, the Illumina High-Density Bovine BeadChip Array 

(BovineHD; 777,962 SNP) and the Affymetrix Axiom Genome-Wide BOS 1 Array (BOS1; 

Affymetrix Inc., Santa Clara, CA; 648,874 SNP). Data published by Illumina and Affymetrix, 

respectively, suggest that the increased marker density of these arrays improves genomic 

coverage (Illumina 2010, Affymetrix 2011). In Angus, the number of informative SNP on the 

BovineHD array increases 11-fold relative to the Bovine SNP50. As the Bovine SNP50 did not 

have proportionally as many SNP that were polymorphic in indicine breeds, these breeds exhibit 

larger increases in effective marker density (~13-14-fold for Nelore, Brahman, and Gir breeds). 

In total, it was estimated that 651,994 SNP on the Illumina BovineHD BeadChip SNP are 

informative in taurine breeds, and 538,517 SNP are informative in indicine breeds. In 

comparison, Affymetrix reported that six taurine breeds have >0.88 genome coverage, and three 
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indicine breeds have 0.79-0.87 genome coverage using the BOS1 array. In terms of the number 

of informative SNP available after quality control, Rincon et al. (2011), in a preliminary study of 

16 Holstein and Jersey cattle genotyped using the BovineHD and the BOS1 arrays, removed few 

SNP from either array due to unreliability (0.6% and 4.9%, respectively, had low call rate, <0.9) 

but relatively larger proportions of the SNP dataset were redundant (49.5% and 21.1%, 

respectively, had LD r2≥0.9). This is consistent with the findings of Harris and Johnson (2010), 

that increasing SNP density from 20K to 1000K in simulation increased LD between flanking 

markers and QTL but also increased the number of uninformative SNP.  

 

It is important to exclude collinear SNP as their inclusion in genomic selection analyses may 

result in the prediction of random error in the training phenotypes or allow a single QTL to be 

attributed to a number of highly correlated SNP, both of which are expected to reduce genomic 

prediction accuracy and its persistency across generations. This was confirmed by Schulz-

Streeck et al. (2011), who found that pre-selection of markers to exclude those with negligible or 

inconsistent effects (using either ridge regression or spatial models) increased genomic 

prediction accuracy in simulation. As referred to above, the BovineHD and BOS1 arrays may 

yield 200-300K informative SNP for genomic analysis in small populations and/or few breeds 

(Rincon et al. 2011) and two-three fold more in larger, more diverse populations (Illumina, 

2010). This density reduces average gap size significantly (based on Rincon et al. 2011, to 11-

12kb), improving average r2 between adjacent markers. Extensive testing of genomic selection 

methods using these high density arrays have not yet been published; however, Hayes et al. 

(2011) reported improved across-breed accuracy in Holstein and Jersey cattle using the 

BovineHD array.  

 

Though increasing marker density to obtain high LD between markers and QTL is optimal, a 

counter-argument is that LD does not need to be present to generate accurate genomic 

prediction. Habier et al. (2007) demonstrated that genomic prediction accuracy could be non-

zero and positive even when there was no LD between markers and QTL present in the 

population simulated, as accuracy is generated by markers which capture either persistent 

association with QTL (LD) or additive genetic relationship, defined as twice the coefficient of 

coancestry (Malécot, 1948). This was shown mathematically by Gianola et al. (2009), where the 

mean genetic variance for a given locus, σu
2, was defined as:  where σa

2 is 

the genetic variance,  is the additive substitution effect expressed as a deviation from the mean, 

and p and q are the allele frequencies at a particular locus. Hence, even when the value of the 
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substitution effect is zero, the locus variance may be non-zero. One way to conceptualize the 

method by which this could occur is to consider the regression of family means on within-family 

allele frequency, which would improve the prediction of family means but not Mendelian 

sampling terms (Jannink, 2010), thus compromising the ability of genomic selection to improve 

genetic gain without increasing inbreeding by facilitating discrimination between siblings prior 

to phenotyping or progeny testing. This was confirmed in simulation by de Roos et al. (2011), as 

the rate of inbreeding strongly increased when young animals selected based on GEBV were 

allowed to be used for breeding. 

 

However, genomic prediction accuracy contributed by markers which capture additive genetic 

relationship but are in linkage equilibrium with QTL will decay with increasing genetic distance 

between the training and target populations, and conversely, accuracy due to linkage 

disequilibrium with QTL will be more persistent across generations. As a result, genomic 

prediction accuracy that is due to LD can be more persistent over time than traditional EBV 

accuracy (Wolc et al. 2011, Pszczola et al. 2012); however genomic selection will cause genomic 

prediction accuracy to decay (Muir 2007) without consistent retraining (Sonesson & Meuwissen 

2009). Wolc et al. (2011) reported substantial accuracy retained five generations post-training 

using both GBLUP and Bayesian models. This was also shown by Pszczola et al. (2012), who 

simulated a TS of 2,000 dairy cows phenotyped for traits of moderate (0.30), low (0.05), and 

extremely low (0.01) heritability and selected the structure of the training population to vary the 

relationship with the target population from 0.0487 to 0.0946 on average based on pedigree 

estimates of additive genetic relationship. Genomic prediction reliability (squared accuracy) 

increased with increasing squared genetic relationship and heritability and decreasing 

generations between the TS and target populations; given the same average squared 

relationship, a randomly chosen TS achieved the highest average reliability, possibly because the 

animals within the TS had the lowest average relationship to each other. This is consistent with 

Calus (2010), who suggested that selecting animals to represent the widest range of possible 

genotypes may increase DGV reliability.  

 

Genomic selection model 

Another factor affecting genomic prediction accuracy is the choice of model, which is dependent 

on the true distribution of QTL effects for a trait, which is unknown. Therefore, there is a wide 

variety of methods that may be used to implement genomic selection, and the optimal model 

may depend on the trait and population being analyzed. Broadly, genomic selection models may 
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be divided into parametric and non-parametric approaches, and within parametric approaches, 

either penalized or Bayesian methods. This review will focus on parametric methods, which 

assume the data derives from a type of probability distribution. Within this category, methods 

differ in their assumptions about the distribution of QTL. Ridge regression assumes that 

markers are normally distributed with mean zero and a common variance, such that all marker 

effects are equally shrunk toward zero (Meuwissen et al. 2001), consistent with an infinitesimal 

model for QTL effects. Other models allow marker variance to be heterogeneous. Meuwissen et 

al. (2001) defined two Bayesian models, termed Bayes A and Bayes B. In Bayes A, it is assumed 

that QTL are normally distributed with mean zero and locus-specific variance, and Bayes B 

extends this model by the further assumption that a fixed proportion of loci (π) have zero effect 

and the remaining proportion (1-π) distributed as in Bayes A. In either, the locus-specific 

variance has a scaled inverse-chi square prior distribution with fixed values for the degrees of 

freedom and scale parameters. Another alternative is Bayes Cπ (proposed by Habier et al. 2011), 

in which the locus-specific variance in Bayes A is replaced with a single variance for all loci, also 

distributed with a scaled inverse-chi square prior, and the proportion of zero effect loci is 

unknown with its own prior distribution, as well as Bayes Dπ in which the scale parameter is 

also treated as an unknown. Bayes Cπ is an extension of stochastic search variable selection 

(SSVS; Meuwissen & Goddard 2004, Verbyla et al. 2009) as suggested by George and 

McCulloch (1993).  

 

For use in cattle, the importance of the choice of model has varied. Using the 13th QTL-MAS 

simulated data set for which the distribution of QTL effects was unknown, the choice of method 

between ridge regression, Bayes A, Bayes A/B hybrid (Verbyla et al. 2010a), and SSVS were 

found to have little effect on genomic prediction accuracy (Verbyla et al., 2010a). This is 

consistent with results reported in dairy cattle (VanRaden et al. 2009, Hayes et al. 2009a), 

where the assumption that all markers are informative with equal variance is effective for most 

traits, and the additional benefit of Bayesian approaches was minimal. In comparison, variable 

selection methods which assume heterogeneous marker variance have been reported to result in 

reduced accuracy (Cole et al. 2009, Su et al. 2010), despite outperforming non-Bayesian 

methods in simulation (Meuwissen et al. 2001, Habier et al. 2007, VanRaden 2008). Wolc et al. 

(2011) found that the additional benefit of using Bayesian methods in layer chickens depended 

on the veracity of the assumption of heterogeneous marker variance, as there was a positive 

correlation between estimates of π and improvement in accuracy. This is consistent with 

Daetwyler et al. (2010), who found that relative accuracy was dependent on Me. Given these 

182



8 
 

varied findings, it is likely that the optimum model will depend on the trait and population, so it 

may be important to perform comparative tests of different genomic prediction models when 

approaching a new genomic prediction study. 

 

One consideration for methods which explicitly estimate marker or haplotypic effects is whether 

to include an additional random polygenic term to account for residual genetic variance (Haley 

& Visscher 1998). Including a polygenic term has been associated with several benefits 

including: reduced bias in the estimation of marker or haplotype variance (Calus & Veerkamp 

2007, Rius-Vilarrasa et al. 2012), increased the persistence of accuracy across generations 

(Solberg et al. 2009), and reduced the sensitivity to the prior distribution of marker effects 

(Rius-Vilarrasa et al. 2012). The inclusion of a polygenic term may be especially useful for low 

heritability traits, as it was reported to explain a greater proportion of the genetic variance of a 

low heritability (0.1) trait than a high heritability (0.5) trait (56-82% vs. 50%) (Calus and 

Veerkamp 2007). Goddard (2009) suggested that models including a polygenic term could 

account for variance contributed by rare alleles that were not in consistent LD with the common 

variants found in dense genotyping arrays. 

 

An alternative to explicitly estimating marker effects is to incorporate marker data into animal 

evaluation by replacing the numerator relationship matrix (A matrix), estimated from the 

average relationship between individuals based on pedigree, with a genomic relationship matrix 

(G matrix), estimated from dense marker data (Nejati-Javaremi et al. 1997, Garrick 2007, 

VanRaden 2007, Zhang et al. 2007, VanRaden 2008), in an approach termed GBLUP. A benefit 

of this approach is that individual animal reliabilities can be calculated by inverting mixed 

model equations including these genomic relationships (VanRaden 2008). Unbiased evaluation 

can be achieved by scaling the G matrix to be compatible with the A matrix and avoiding 

excessively high MAF SNP exclusion thresholds which, while minimally affecting the accuracy of 

prediction, could bias upward accuracy calculated by inversion (Chen et al. 2011). These 

accuracies are more useful than those derived from cross-validation, as accuracies derived from 

GBLUP can be adjusted for any intensity of selection whereas those derived from cross-

validation are limited to a single breeding scheme, resulting in underestimation of the benefit to 

accuracy of including genomic information when selection differs between the sexes (Bijma 

2012). GBLUP has been reported to outperform Bayesian mixture models in a combined 

population of Swedish Red Breed and Finnish Ayrshire cattle, both in GEBV accuracy and the 

extent to which GEBV captured the Mendelian sampling term (Rius-Vilarrasa et al. 2012). Clark 
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et al. (2012) compared GBLUP accuracy to that derived using shallow (1-generation) or deep 

(10-generation) pedigree BLUP methods, and found that, while accuracies of pedigree BLUP 

and GBLUP were similar when individuals in the TS and validation populations were closely 

related, GBLUP could derive a baseline accuracy that was greater than zero for distantly related 

or “unrelated” (within 10-generations) individuals, in contrast to pedigree methods for which 

EBV for unrelated animals are zero. The authors suggest that this baseline accuracy could be 

optimized by obtaining a TS that covers the genetic diversity of the population or breed, in 

agreement with Calus (2010). 

 

As an extension of the GBLUP method, phenotypic and pedigree data from animals that have 

not been genotyped can be incorporated into genomic evaluation by creating a joint relationship 

matrix including pedigree and genomic relationships (Misztal et al. 2009, Legarra et al. 2009, 

Christensen and Lund 2010). Aguilar et al. (2010) reported the first single-step genetic 

evaluation including pedigree, phenotypic, and genotypic information for final score of U.S. 

Holsteins, which was completed in only slightly more time than a traditional pedigree-based 

analysis and with comparable accuracy to a multiple-step procedure using a combination of 

pedigree BLUP and GBLUP to incorporate the same information. 

 

A last consideration in terms of genomic prediction methodology is the choice of phenotype to 

be used in training. Given the structure of dairy and beef cattle populations, in which breeding 

bulls sire many progeny and are of great economic value, which can offset the cost of high 

density genotyping, TS have typically been composed of bulls. However, the optimum phenotype 

to use has varied between research groups. As of 2009, genomic evaluations conducted by 

Interbull members were performed using daughter yield deviations (DYD) weighted by effective 

daughter contributions, deregressed proofs (DRP) weighted by their (deregressed) reliabilities, 

unweighted estimated breeding values (EBV), or unweighted raw phenotypic records (Loberg & 

Durr 2009). DRP, derived from EBV (Jairath et al. 1998), are essentially pseudo-phenotypes 

which account for all the information present in an individual’s EBV, with a heritability equal to 

the reliability of the EBV. For animals with high accuracy EBV, training on DRP may effectively 

increase the heritability of the trait, and thus improve the accuracy of the resulting genomic 

prediction.  

 

When the original phenotypic data is not available for genomic evaluation, DRP are an 

alternative to training on unweighted EBV. Garrick et al. (2009) advocated for the use of 
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weighted DRP instead of EBV in order to avoid both the shrinkage present in EBV and the 

correlation between TBV and EBV prediction error, to account for differing EBV accuracy 

between individuals in the TS using appropriate weighting, and to adjust DRP to account for 

parental contribution, such that DRP encompassed only the information of the individual and 

its descendants in order to avoid double counting animals that are members and ancestors of 

the TS. However, Su et al. (2010) commented that EBV contain less random error, thus reducing 

prediction error variance. The results of comparative studies have varied. Several studies have 

found genomic prediction to be inflated when DRP were used as the response variable (Aguilar 

et al. 2010, Lund et al. 2010). Gredler et al. (2010) reported that training with EBV 

outperformed DRP and DYD for protein yield and inter-insemination interval in Fleckvieh dual 

purpose cattle using GBLUP and Bayesian methods. In a simulated dairy population, Guo et al. 

(2010) found that training on EBV resulted in equal or somewhat higher accuracies relative to 

training on DYD, with starker differences when heritability or average EBV or DYD reliability 

was low. This is expected as the correlation between EBV and DYD decreases with reliability. In 

contrast, Ostersen et al. (2011) reported higher accuracies using DRP  as the response variable 

for the evaluation of daily gain and feed conversion ratio in Danish Duroc pigs, in which the 

average EBV reliability (0.62±0.18 and 0.36±0.12 in 1,375 reference animals) was lower than is 

common in many dairy evaluations. DRP were also used as the response variable in the 

evaluation of 16 traits in Angus cattle conducted by Saatchi et al. (2011), in which an average 

accuracy of 0.441 calculated by K-means clustering was reported given TS for each trait ranging 

from 698-3,231 DRP records with average reliability 0.40 to 0.79.  

 

For expensive-to-measure traits recorded on females or terminal animals, it is worth 

considering whether training on individual phenotypes may be a better approach to condensing 

the performance of many individuals into a single record attributed to a common sire. Verbyla et 

al. (2010b) estimated genomic prediction accuracy for energy balance using a TS of 527 Dutch 

Holstein-Friesian heifers to be 0.29, which would be expected to increase with increasing TS 

size. Using simulated TS of phenotyped cows, Buch et al. (2011) estimated that DGV accuracy 

for a low heritability (0.05) trait increased from ~0.15 in year 1 to ~0.35 in year 10 with 2,000 

cows phenotyped per year, exceeding DGV accuracy using sires alone as the TS during the same 

interval. Wall et al. (2011) used four experimental dairy populations from three countries to 

create a pooled reference population of 1,630 cows phenotyped for both commonly recorded 

traits (e.g. milk, fat, and protein yield) but more importantly, expensive-to-measure traits (e.g. 

dry matter intake, energy intake, and energy balance), and found the genetic correlation 
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between herds for the same trait consistently high (≥0.85). If high density genotyping were 

implemented in such pooled reference populations, this would constitute a valuable TS for 

genomic selection.  

 

Genomic prediction in multiple populations or breeds 

Goddard and Hayes (2009) proposed that multiple breed TS could be used to improve the 

accuracy of DGV if there was sufficient linkage disequilibrium between markers and QTL. 

Ibáñez-Escriche et al. (2009) agreed and further concluded that accurate multi-breed 

evaluations would work only if the breeds were closely related due to variability in linkage 

disequilibrium between breeds. Though the current application of GS has favored single breed 

application, Brøndum et al. (2011) reported increased genomic prediction accuracy using a 

multi-breed TS incorporating Swedish Red Breed (SRB) and Finnish Ayrshire (FAY), two 

populations with strong genetic links corroborated by the G matrix reported in that study. Using 

the same populations, Rius-Vilarrasa et al. (2012) compared GBLUP with Bayesian models 

assuming a range of proportions for the lowly informative loci. GEBV accuracy increased with 

increasing proportion of informative markers in mixture models, but was generally surpassed by 

GBLUP accuracy. This study also revealed a condition under which differences between genomic 

selection methods is significant. It was proposed that, in contrast to the finding of Hayes et al. 

(2009a), DGAT1 does not contribute as strongly to the genetic variance of fat yield in SRB and 

FAY, as flanking markers are nearly at fixation (0.93 allele frequency), as opposed to the case in 

Holstein cattle, for which the allele frequency of the K variant of DGAT1 can range from 0.35 to 

0.70 between populations (Grisart et al. 2001, Spelman et al. 2002, Winter et al. 2002, Thaller 

et al. 2003). In contrast, the choice of priors and model were found to have minimal impact on 

genomic prediction accuracy in a multi-line study in chickens (Andreescu et al. 2010), but 

population structure was critical. Using 10 breeding lines, the authors showed that correlations 

between DGV and progeny means were low when training and validation sets were divided 

along breeding lines (train in 9 lines, predict 10th line) rather than including all lines in both 

training and validation sets (correlation with progeny means: 0.09 vs 0.51 on average), 

reiterating the importance of genetic relationship between TS and validation populations to 

genomic prediction accuracy.  

 

Similar findings were reported in Angus cattle (Saatchi et al. 2011), in which using K-means 

clustering to minimize the relationship between animals in the TS and validation populations 

reduced accuracy relative to using random clustering or dividing the TS and validation 
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populations by year of birth. Considering the case of admixed and crossbred cattle, Toosi et al. 

(2010) reported that, in a simulation using a TS of 1,000 animals genotyped with marker density 

of 5 SNP per cM and phenotyped for a moderate heritability trait, admixed or crossbred 

populations could be used to develop GS prediction equations that would be effective in both the 

mixed breed and the constituent purebred populations, but would be of reduced accuracy in 

breeds not included in the TS due to reduced relationship between TS and validation 

populations. However, in that study, the average distance between pair of markers with LD 

r2≥0.7 was 3x larger in purebred than in admixed or crossbred populations, suggesting that 

greater marker density would be required to obtain markers in consistent linkage disequilibrium 

across breeds, emphasizing the importance of utilizing high density genotyping arrays. In terms 

of methodology, there may be some improvement in accuracy derived from fitting breed 

proportion in GBLUP, as Makgahlela et al. (2012) reported 2-3% improvement in the reliability 

for genomic prediction of milk and protein indices in Nordic Red cattle.  

 

Conclusions and Implications to Genetic Improvement of Beef Cattle 

Significant progress has been made in the development of genomic prediction in cattle. 

Moderate to highly accurate single breed prediction has been reported using the Bovine SNP50 

genotyping assay, and it is expected that high density assays such as the BovineHD and BOS1 

will improve the accuracy of multi-breed prediction. Preliminary findings in Holstein and Jersey 

populations suggest that marker density after quality control may provide sufficient levels of LD 

to achieve high accuracy genomic predictions derived in simulation studies. However, linkage 

disequilibrium is only one of several critical factors which determine genomic prediction 

accuracy. Others include TS size and characteristics, the heritability of trait, the distribution of 

QTL effects, and the suitability of the genomic prediction model. High accuracies have been 

obtained with reduced computational demand using GBLUP and single-step methodology, but 

when the true number of QTL affecting a trait is low, Bayesian approaches that allow 

heterogeneous marker variance can be more effective relative to other parametric approaches. 

Based on studies in dairy cattle, there is potential to use pooled reference populations of 

phenotyped females to obtain more accurate genomic predictions for reproductive or other 

expensive or difficult to measure traits rather than focusing only on influential bulls. With 

higher density genotyping assays available, it is envisaged that data may be pooled across breeds 

to obtain accurate genomic predictions for economically-relevant traits that are not currently 

included in national beef cattle evaluations.  
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