












Next generation sequencing

- Accuracy ranges from 87% to 99%
 –General trend is decreased accuracy with longer read-length
 - Generally read 50 to 1000+ bases per read
 Easier to assemble longer reads
- Net effect is cheaper genome sequencing
 - -Costs from \$0.05 to \$10 per million bases
 - -Enough sequence for \$150 whole genome

Some complications

- Initial cost
 - -Sequencer costs from \$80,000 to \$1 million
- · Genome assembly

Larry Kuehn • Selection Decisions Committee Breakout

Some complications

Initial cost

-Sequencer costs from \$80,000 to \$1 million

Genome assembly

- -Overlap helps
 - Long reads better
 - Helps to compare to base sequence (other cattle)

Complications

- Tremendous amount of data
- -Hard to store, let alone manipulate
- -Makes assembly even tougher
- Have to develop tools based on results
 For example, genotyping based on new markers discovered in sequence (50K chip)
 - Hard to decide what 'differences' among animals are important
 - As with chips, phenotypes are still very important

Complications

- Multiple reads required
 - Reading 3 billion bases does not mean whole genome read
 - Each animal has two full genomes (diploid)
 - Genome is fragmented randomly into small pieces
 - Same section of genome likely read numerous times
 - Some advocate sequencing 20-50x when targeting whole genome

 Focusing on one animal reduces impact of examining multiple animals (diversity, discovery, etc.)

Why bother?

- · From a geneticist perspective:
 - Interested in sequencing to improve our chance at finding causal variation
 - Examine differences in sequence
 - Leads to finding markers and mutations
 - Mutations may change protein structure or protein regulation
 - -Ultimately differences we see due to genetics lie with differences in the genome or its regulation

Two different strategies

- Compare genomes of diverse animals to see where they are different
 - Marker development, mutational candidates
 Follow up with genotyping platform
- Associate differences in sequence among several animals with trait variation

 Requires large numbers of sequenced animals
- First stasts and share a mean as striction

• First strategy cheaper, more restrictive

Functional variants

Impact	Effect	
High	SPLICE_SITE_ACCEPTOR	FRAME_SHIFT
	SPLICE_SITE_DONOR	STOP_GAINED
	START_LOST	STOP_LOST
	EXON_DELETED	RARE_AMINO_ACID
Moderate	NON_SYNONYMOUS_CODING	CODON_CHANGE
	CODON_INSERTION	CODON_DELETION
	UTR_5_DELETED	UTR_3_DELETED
	CODON_CHANGE_PLUS_CODON_INSERTION CODON_CHANGE_PLUS_CODON_DELETION	
Low	SYNONYMOUS_START NON_S	SYNONYMOUS_START
	SYNONYMOUS_CODING NON_S	SYNONYMOUS_STOP
	SYNONYMOUS_STOP START	_GAINED
Modifier	All other effects	

Larry Kuehn • Selection Decisions Committee Breakout

Summary

- Sequencing offers many possibilities
 - -Move toward causal variation
 - -Increase selection opportunities
 - Detect microbial interactions with economically relevant traits
 - -Lower genotyping costs

Current efforts

- So we have potential for a lot of data
- Now what?

Mention of a trade name, proprietary product, or specific equipment does not constitute a guarantee or warranty by the USDA and does not imply approval to the exclusion of other products that may be suitable.