

NC STATE UNIVERSITY
Health Traits
 Health can have a large impact on overall productivity and profitability Dairy cattle: milk production, fertility, etc. Beef cattle: milk production, fertility, etc.
 We need to focus attention on improving the health and welfare of cows, as well as production, in order to remain competitive with other countries
NC STATE UNIVERSITY

NC STATE UNIVERSITY Animal Science Department Genetics and Genetics

Part 2: Genetic Analyses

NC STATE UNIVERSITY

- Do health traits have a genetic component?
- · Would genetic selection be possible?
- What are the heritabilities of diseases calculated using producer-recorded data?

NC STATE UNIVERSITY

C STATE UNIVERSITY

Genetic Analyses

- Estimate heritabilities for common health events occurring from 1996 to 2012
- · Similar editing was applied
 - US records
 - Parities 1 through 5
 - Minimum/maximum constraints

NC STATE UNIVERSITY Animal Science Departments Genetics and Genomics

NC STATE UNIVERSITY Genomic Analyses • 50K SNP data available for 7,883 bulls • Single-step methodology was employed to include genomic information using thrgibbs1f90 Tsuruta & Misztal, 2006

Kristin Gaddis • Emerging Technologies Committee Breakout

NC STATE UNIVERSITY	NC STATE UNIVERSI	TY			
Genomic Analyses	Genomic Analyses				
 Multiple trait analysis using a threshold sire model 	• Prelir	Preliminary results:			
$\lambda = X\beta + Z_h h + Z_s s$		Mastitis	Metritis	Lameness	
λ = unobserved liabilities to the diseases	Mastitis	0.09 (0.07, 0.10)			
β = vector of fixed effects (parity year-season)	Metritis	-0.27 (-0.38, -0.11)	0.04 (0.039, 0.05)		
V = incidence matrix of fixed effects	Lameness	-0.15 (-0.33, 0.14)	-0.02 (-0.21, 0.14)	0.01 (0.004, 0.014)	
h = random herd-year effect $h = \text{random sire effect} \left(s \sim N(0, H\sigma_s^2)\right)$ $Z_h, Z_s = \text{incidence matrix of corresponding random effect}$	Select estim correlations	Select estimated heritabilities (95% HPD) on diagonal and estimated genetic correlations (95% HPD) below diagonal.			

Genomic Analyses

Comparison of reliability calculated with and without genomic information

Event	EBV Boliobility	CERV Poliability	Porcont Incrosco
Event	EBV Kellability	GEBV Kellability	Fercent increase
Displaced abomasum	0.30	0.40	33%
Ketosis	0.28	0.35	25%
Lameness	0.28	0.37	32%
Mastitis	0.30	0.41	37%
Metritis	0.30	0.41	37%
Retained placenta	0.29	0.38	31%

NC STATE UNIVERSITY Animal Science Department Genetics and Genomics

NC STATE UNIVERSITY

Discussion & Conclusions

- Data Editing & Validation
 - Evidence for the usefulness of on-farm recorded health information
 - Incidence rates were similar to those in literature
 - Improvements could be made with more complete data recording and standardized event definitions

NC STATE UNIVERSITY Animal Science De Generics and Ge

NC STATE UNIVERSITY

Discussions & Conclusions

- · Genetic Analyses
 - Health events do have a genetic component
 - Low heritabilities
 - Reasonable improvements must be expected
 - Also largely influenced by environmental factors
 - Focus on long-term results

NC STATE UNIVERSITY Animal Science Department

