

The problem

- Methane is a greenhouse gas
- Methane represents a loss of feed energy

Table 6-3: CH4 Emissions from Enteric Fermentation (Tg CO2 Eq.)								
Livestock Type	1990	2005	2008	2009	2010	2011	2012	
Beef Cattle	100.0	105.8	107.5	106.3	105.4	103.1	100.6	
Dairy Cattle	33.1	31.6	34.1	34.4	34.1	34.5	35.0	
Swine	1.7	1.9	2.1	2.1	2.0	2.1	2.1	
Horses	0.8	1.5	1.6	1.6	1.6	1.6	1.7	
Sheep	1.9	1.0	1.0	1.0	0.9	0.9	0.9	
Goats	0.3	0.3	0.3	0.3	0.3	0.3	0.3	
American Bison	0.1	0.4	0.3	0.3	0.3	0.3	0.3	
Mules and Asses	+	+	0.1	0.1	0.1	0.1	0.1	
Total	137.9	142.5	147.0	146.1	144.9	143.0	141.0	

Factors that contribute to enteric methane production

- · Level of feed intake
- · Diet composition

Factors that might contribute to variation in feed efficiency and methane production

- · Different passage rate
- Different rumen volume

Rumen volume increased in sheep with high methane yields Table 3. Physical characteristics of evens selected on the basis of displaying high or low methane yield (MY, g CH₂H) per kg DM intake). (Mean values with their periodic disurciant errors) Groups ... High MY Low MY Pooled stars P Rumen content weight (kg) 5.42 4.43 0.257 0.074 Rumen volume (Bross) 7.42 5.91 0.955 0.948 Rumen centered DMH; 9.56 12.97 0.9115 NS Rumen centered CMH; 9.56 12.97 0.9115 NS Rumen centered weight, name volume and rumen gas ispace proportion were derived from computer than an estimated DMS; was derived from the weight of periodic polarities during the content completed periodic proportion were derived from computer than one selected DMS; was derived from the weight of periodic polarities during the content content computer of the content content computer of the content content

A strategy is to place downward select on feed intake while maintaining or increasing production

- · Selection index
- Create a score for feed efficiency
 -Residual Feed Intake (RFI)

Residual Feed Intake has been used in conjunction with several production traits

• Growth

• Milk

• Egg

Increasing feed intake reduces the methane production per unit feed Methane, feed intake, and growth characteristics of steers with the lowest (L; n = 10) and greatest (H; n = 10) residual feed intake measured over 15 d L-RFI Item H-RFI SED P-value DMI, kg/d 8.38 14.13 0.83 < 0.001 ADG, kg G:F 0.142 0.088 0.006 <0.001 Methane, g/d 142.3 190.2 16.5 0.01 Methane, g/kg ADG 131.8 173.0 22.8 0.09 Methane, g/kg DMI 16.3 14.7 0.37 Hegarty et al., 2007, J Anim Sci 86:1479-1486

Summary of relationships between feed efficiency and methane production in the growing animal

Increasing rumen digestibility can increase feed efficiency and increase methane production

Summary of relationships between feed efficiency and methane production in the growing animal

- Increasing rumen digestibility can increase feed efficiency and increase methane production
- Reducing feed intake and holding weight gain constant will improve feed efficiency and decrease methane production

Reducing methane footprint of growing cattle

- Decrease the days from birth to harvest
- Reduce feed required to achieve target rates of gain

Factors that contribute to cow efficiency also contribute to methane efficiency

- Wean a calf every year
- Increase the weight of calf weaned relative to cow size
- Reduce feed inputs while holding production traits constant

There is a positive phenotypic correlation between heifer dry matter intake and lactating 3-year-old dry matter intake

0.633 (0.001) Black et al., 2013, J. Anim. Sci. 91:2254-2263

Selection for post-weaning RFI for 1.5 generations

Table 3. Least squares means (± s.e.) for maternal productivity traits of cows divergently selected for residual feed intake (RFI)

The number of cows exposed to a bull was 222 for low RFI and 247 for high RFI

Trait	Selection line		Level of
	Low RFI	High RFI	significance
Calving day ^A	215 ± 2	210 ± 1	P = 0.07
Milk vield (kg/day) ^B	7.5 ± 0.3	7.8 ± 0.3	n.s.
Weight of calf born per cow exposed (kg)	33.6 ± 1.1	31.8 ± 1.0	n.s.
Weight of calf weaned per cow exposed (kg)	191.3 ± 8.4	198.4 ± 7.7	n.s.

 $^{\rm A}{
m I}$ January is day I each calving year. $^{\rm B}{
m The}$ number measured for milk yield was 56 and 66 for low and high RFI cows, respectively.

Arthur et al., 2005, Aust. J. Exper. Agric. 45:985-993

