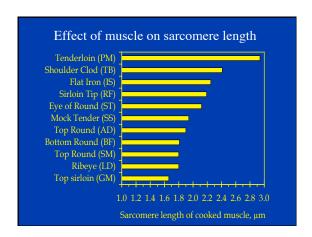
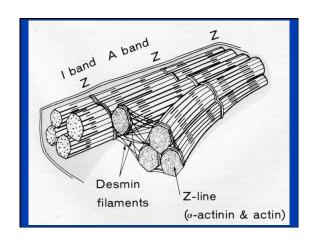
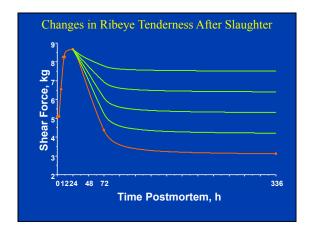
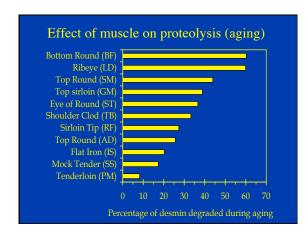

We focus more on tenderness than other eating quality traits


Biological basis for variation in meat tenderness

- Marbling
- Contractile state
- Enzymatic degradation of proteins
- Connective tissue

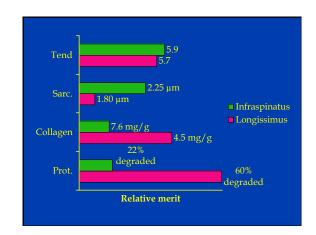

Contractile State Extent of muscle shortening during rigor mortis formation



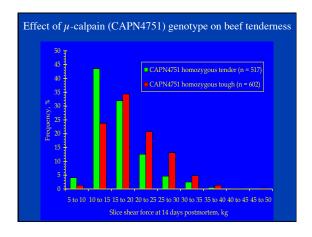

Enzymatic breakdown of protein (proteolysis)

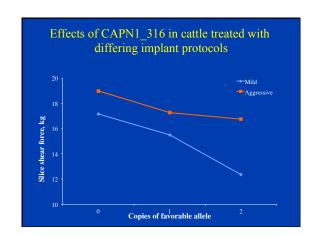
The Calpain Proteolytic System

- µ-calpain
- •m-calpain
- •calpastatin



Tenderness Among Muscles

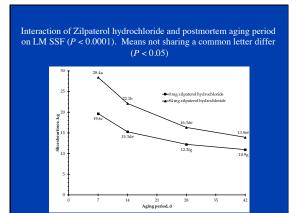

The relative contribution of extent of muscle shortening, connective tissue, and the extent of postmortem proteolysis is muscle dependent.



Genetic Markers for Meat Tenderness

We have validated the tenderness markers in commercial populations

Effect of Implants on Tenderness



Effect of Beta Agonists on Tenderness

spectroscopy (Exp. 1; n = 16 pens)				
Factor	LM SSF at 14 d postmortem, kg	Frequency of samples with LM SSF > 25 kg, %	Frequency of carcasses predic tender with VISNIR, %	
CP Level (%)1		0,		
13.5	14.6	0.4	95.5	
17.5	14.9	1.8	95.1	
SEM	0.4	0.7	1.7	
$P > \mathbf{F}$	0.61	0.23	0.87	
RH inclusion rate (mg-hd-1-d-1)				
0	14.1	0.9	95.6	
300	15.4	1.3	95.1	
SEM	0.4	0.7	1.7	
P > F	0.03	0.66	0.84	
CP × RH interaction				
13.5% CP, 0 mg·RH hd·1·d·1	14.4	0.9	95.6	
13.5% CP, 300 mg·RH hd·1-d·1	14.8	0.0	95.5	
17.5% CP, 0 mg·RH hd ⁻¹ ·d ⁻¹	13.8	0.9	95.6	
17.5% CP, 300 mg·RH hd·1-d-1	15.9	2.7	94.7	
SEM	0.5	1.0	2.4	
P > F	0.16	0.23	0.87	

Effects of zilpaterol hydrochloride (ZH) on beef LM slice shear force (SSF) at 14 d postmortem, the frequency of samples with LM SSF > $25\ kg$, and the frequency of carcasses predicted tender with visible and near-infrared (VISNIR) spectroscopy (n = 16 pens)

ZH status	LM SSF at 14 d	Frequency of samples with LM SSF > 25 kg, %	Frequency of carcasses predicted tender with VISNIR, %
Control	16.2	3.6	92.3
Zilmax	24.2	39.3	57.7
SEM	0.6	4.1	3.1
P > F	0.0001	0.0001	0.0001

Current Beta Agonist Studies

- Optaflexx aging time
 Zilmax heat stress/mobility with UNL/
- · Zilmax consumer study

Effect of Degree of Dark Cutting on Tenderness and Flavor Attributes of Beef

- Carcasses selected when presented for carcass
 - For each DC carcass, a normal cohort of similar marbling score was selected from the same production lot
- Longissimus pH was collected online and us classify into DC classes

n=40 mean pH=6.9 n=40 mean pH=6.6 n=40 mean pH=6.4 n=40 mean pH=6.1 -Severe DC -Moderate DC -Mild DC -Shady DC -Normal Cohort n=160 mean pH=5.7

Least square means for slice shear force, sarcomere length, and desmin degradation percentage

Degree	Slice Shear Force (kg)	Sarcomere Length (µm)	Desmin Degradation (%)
Severe DC	16.8ª	1.66a	49.20a
Moderate DC	19.4ª	1.67a	40.31a
Mild DC	22.9 ^b	1.71 ^{ab}	42.07a
Shady DC	25.6 ^b	1.73 ^b	43.30a
Normal	17.8ª	1.86°	59.83 ^b

Least square means for trained sensory panel descriptive flavor attribute analysis

Degree	Rancid	Musty
Severe DC		
Moderate DC		
Mild DC	$0.20^{\rm b}$	$0.11^{\rm b}$
Shady DC	0.10^{c}	0.08^{bc}
Normal	0.08°	0.03°

Conclusion

- Dark cutting carcasses differed in tenderness, juiciness, and flavor attributes
 - Direction/magnitude dependant upon severity of DC
 - Severe and moderate DC were higher in "off-flavors"
- Shady dark cutters are most likely to be tough
 - -Included in U.S Select and U.S. Choice

Freeze/Age

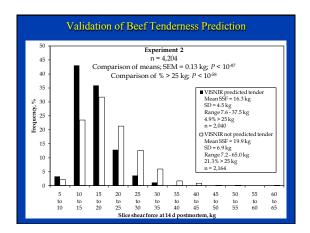
Can we take advantage of what we know about the calpain system and its inhibitor calpastatin?

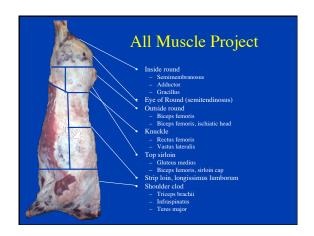
Effect of freezing or freezing, thawing, and aging on slice shear force

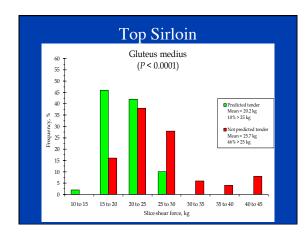
	Longissimus		Semitendinosus	
Treatment	SSF	%>25kg	SSF	%>25kg
Freeze 2/Age 12	17.8 ^d	0	20.8c	6
Fresh 14d	25.3b	46	25.5b	49
Freeze 14d	22.4°	26	22.4°	34
Freeze 14/Age 14	14.6e	3	19.0 ^d	0
Fresh 28d	18.7 ^d	11	21.7°	17

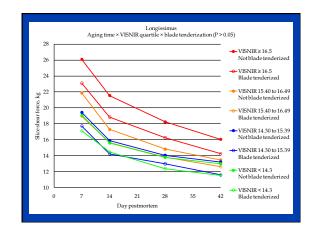
Effect of freezing or freezing, thawing, and aging on slice shear force

	Longissimus		Semitendinosus	
Treatment	SSF	%>25kg	SSF	%>25kg
Fresh 2d	33.1a	100	29.2a	83
Fresh 14d	25.3 ^b	46	25.5b	49
Freeze 14d	22.4°	26	22.4°	34
Freeze 14/Age 14	14.6e	3	19.0 ^d	0
Fresh 28d	18.7 ^d	- 11	21.7°	17

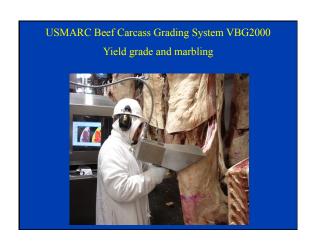

Effect of freezing or freezing, thawing, and aging on slice shear force

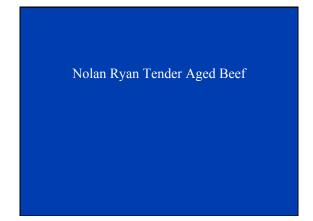

	Longissimus		Semitendinosus	
Treatment	SSF	%>25kg	SSF	%>25kg
Fresh 2d	33.1a	100	29.2a	83
Freeze 2d	27.4 ^b	57	24.5 ^b	40
Freeze 14d	22.4°	26	22.4°	34
Freeze 14/Age 14	14.6e	3	19.0 ^d	0
Fresh 28d	18.7 ^d	11	21.7°	17

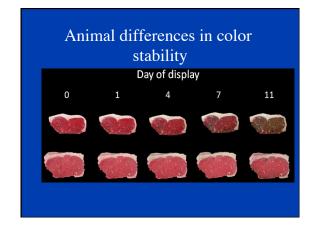

Predicting Tenderness

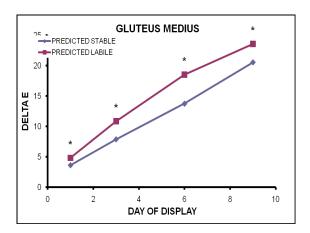

The USMARC Beef Tenderness System

Use of visible and near-infrared reflectance to predict beef tenderness









Lean Color Stability in the Retail Case

