Opportunities and Challenges for a New Approach to Genomic Prediction

Dorian Garrick dorian@iastate.edu

Prediction of Merit

- Philosophical concept embodied in the "model" that is the basis for prediction
- Statistical method used to estimate effects and perhaps other parameters in the model
- Computing algorithm(s) to implement the statistical method

Philosophical Concept

 A Model describes cause and effect - the underlying process believed to result in the observations

Performance = Breeding + Feeding

Phenotype = Genotype + Environment

• The model (or a simplification of the model) is the basis for prediction

Model

- The model is not completely specified with the model equation
 - -Must also define information about;
 - the locations (means) of effects
 - the dispersion (variance-covariance) of effects

 Based on pedigree-relationships for true EPD
 - sometimes the distributional assumptions of effects

 eg normality of genetic and residual effects
 - Heritabilities, phenotypic standard deviations, genetic and phenotypic correlations are derived from these parameters

Statistical Method

- · Preferred method is known as "BLUP"
 - Best meaning it minimizes the variance of prediction errors
 - Linear meaning EPD are computed from weighted sums and differences of observations
 - Unbiased meaning that estimates are equally likely to increase or decrease when more information is obtained
 - -Prediction refers to estimates of random effects

Computing Algorithm(s)

 Henderson invented an efficient strategy to predict EPD based on mixed model equations

$$\begin{bmatrix} X'X & X'Z \\ Z'X & Z'Z + \lambda A^{-1} \end{bmatrix} \begin{bmatrix} b \\ u \end{bmatrix} = \begin{bmatrix} X'y \\ Z'y \end{bmatrix}$$
Scalar Variance Ratio
$$\lambda = (1 - h^2)/h^2$$
Inverse of pedigree-based relationship matrix

Implementation

- Brute force formation of the sparse elements of the MME
 - Form the sparse inverse relationship matrix from pedigree
 - Accumulate and store only non-zero values
- · Iteratively solve to obtain EPD
 - Start with some values for every effect
 - Iteratively refine the values to get a solution
 - · Gauss-Seidel was the initial method of choice
 - Preconditioned Conjugate Gradient (PCG) was later adopted
- Some methods avoid forming the MME (IOD)

Implementation

- Solving the MME gives the EPD, but the prediction error variances needed to obtain EPD accuracies or reliabilities require the inverse of the left-hand side of MME
 - -Too big to obtain with national data
 - -Various approximations were developed
- Whole analysis is so much work it is often run
 2-3x per year with regular interim solutions

Genomic Technology

- This lead to some suggested philosophical changes in the model
 - Nejati-Javaremi (1997) imagined replacing the pedigree-based relationship matrix by relationships assessed using genomic information
 - Meuwissen, Hayes and Goddard (2001) extended Falconer's definition of a breeding value as the sum of gene effects to predict the EPD as the sum of estimated SNP effects
- These two approaches are actually equivalent and give the same EPDs
 - Stranden and Garrick (2009)

Breeding Value Model

- Use genotypes to obtain some kind of genomic relationship matrix
 - Using this instead of the pedigree-based relationship matrix is known as GBLUP
 - Minor modifications required to old software
- · Now the relationship matrix and its inverse (if it exists) are dense, not sparse, requiring more computing effort
- Now the approximations for prediction error variances are not as good

Marker-Effects Model

- Use Henderson's MME to predict marker effects rather than breeding values
 - -Use the marker effects to obtain EPD
- These models have been a major focus of researchers at Iowa State University over the last 6 years
 - -New software has been developed (GenSel)
 - BayesC, BayesCpi, more efficient BayesA, Bayes B - Categorical data, dominance effects, etc

New Computing Strategies

- Markov chain Monte Carlo (MCMC) has become a popular strategy for model fitting
 - -Not just a Bayesian technique
 - -Alternative to methods for iterative solution like Gauss-Seidel and PCG
- · MCMC provides plausible values for each of the effects in the model, not just the estimates of effects that solve the equations
 - -This gives you the EPD and the PEV, accuracy etc

Not everyone genotyped

• Now we have two different models – one for genotyped and another for non genotyped

Only some animals genotyped (1)

- First Approach: Breeding Value Model for all
 - -Same model equation (use EPDs)
 - -Single Step HBLUP strategy
 - · Various publications (Misztal, Legarra, Aguilar)
 - -Assumed variance-covariance (H) is based
 - primarily on pedigree relationships for non-genotyped
 - primarily on genomic relationships for genotyped
 - -Use its inverse in conventional software
 - -Limit on about 100,000 genotyped animals

Single Step HBLUP

· First Attempt to model covariance

$$var \begin{bmatrix} u_n \\ u_g \end{bmatrix} = \begin{bmatrix} A_{nn} & A_{ng} \\ A_{gn} & G_{gg} \end{bmatrix} \sigma_a^2$$
 Misztal et al (2009)

Second Attempt to model covariance

$$\begin{split} H &= var {u_n \brack u_g} \sigma_a^{-2} = \begin{bmatrix} A_{nn} + A_{ng} A_{gg}^{-1} G_{gg} A_{gg}^{-1} A_{gn} & A_{ng} A_{gg}^{-1} G_{gg} \\ G_{gg} A_{gg}^{-1} A_{gn} & G_{gg} \end{bmatrix} \\ H^{-1} &= A^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & G_{gg}^{-1} - A_{gg}^{-1} \end{bmatrix} \\ &\quad \text{Aguilar et al (2010)} \end{split}$$

$$G^{-1} = A^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & G_{qq}^{-1} - A_{qq}^{-1} \end{bmatrix}$$

Only some animals genotyped (2)

- Second Approach: Hybrid Model
 - Impute genotypes for non genotyped from their genotyped relatives
 - -Estimate marker effects from all animals
 - Fit a residual breeding value effect for non genotyped animals to account for imputation errors

Fernando, Dekkers and Garrick (2014) GSE

Let's revisit the basic idea

$$\begin{split} \begin{bmatrix} y_{\scriptscriptstyle n} \\ y_{\scriptscriptstyle g} \end{bmatrix} &= \begin{bmatrix} X_{\scriptscriptstyle n} \\ X_{\scriptscriptstyle g} \end{bmatrix} b + \begin{bmatrix} Z_{\scriptscriptstyle n} & 0 \\ 0 & Z_{\scriptscriptstyle g} \end{bmatrix} \begin{bmatrix} u_{\scriptscriptstyle n} \\ u_{\scriptscriptstyle g} \end{bmatrix} + \begin{bmatrix} e_{\scriptscriptstyle n} \\ e_{\scriptscriptstyle g} \end{bmatrix} \\ with \ u_{\scriptscriptstyle g} &= M_{\scriptscriptstyle g} \alpha \ for \ genotyped \ individuals \ \ \text{(MHG 2001)} \\ whereas \ u_{\scriptscriptstyle n} &= \widehat{u_{\scriptscriptstyle n}} / u_{\scriptscriptstyle g} + \left(u_{\scriptscriptstyle n} - \widehat{u_{\scriptscriptstyle n}} / u_{\scriptscriptstyle g} \right) = \widehat{u_{\scriptscriptstyle n}} / u_{\scriptscriptstyle g} + \varepsilon_{\scriptscriptstyle n} \\ with \ \widehat{u_{\scriptscriptstyle n}} / u_{\scriptscriptstyle g} &= A_{\scriptscriptstyle ng} A_{\scriptscriptstyle gg}^{-1} u_{\scriptscriptstyle g} \\ so \ u_{\scriptscriptstyle n} &= A_{\scriptscriptstyle ng} A_{\scriptscriptstyle gg}^{-1} u_{\scriptscriptstyle g} + \left(u_{\scriptscriptstyle n} - A_{\scriptscriptstyle ng} A_{\scriptscriptstyle gg}^{-1} u_{\scriptscriptstyle g} \right) \\ &= \left(A_{\scriptscriptstyle ng} A_{\scriptscriptstyle gg}^{-1} M_{\scriptscriptstyle g} \right) \alpha + \varepsilon_{\scriptscriptstyle n} \end{split}$$

Fernando, Dekkers and Garrick (2014) GSE

With "Hybrid" Mixed Model Equations

$$\begin{bmatrix} X'X & X'ZM & X_n'Z_n \\ M'Z'X & M'Z'ZM + \phi & M_n'Z_n'Z_n \\ Z_n'X_n & Z_n'Z_nM_n & Z_n'Z_n + A^{nn}\lambda \end{bmatrix} \begin{bmatrix} b \\ \alpha \\ \varepsilon_n \end{bmatrix} = \begin{bmatrix} X'y \\ M'Z'y \\ Z_n'y_n \end{bmatrix}$$

$$where \ X = \begin{bmatrix} X_{\scriptscriptstyle n} \\ X_{\scriptscriptstyle g} \end{bmatrix}, Z = \begin{bmatrix} Z_{\scriptscriptstyle n} \\ Z_{\scriptscriptstyle g} \end{bmatrix}, M = \begin{bmatrix} M_{\scriptscriptstyle n} \\ M_{\scriptscriptstyle g} \end{bmatrix} = \begin{bmatrix} A_{\scriptscriptstyle ng} A_{\scriptscriptstyle gg}^{-1} M_{\scriptscriptstyle g} \\ M_{\scriptscriptstyle g} \end{bmatrix}, y = \begin{bmatrix} y_{\scriptscriptstyle n} \\ y_{\scriptscriptstyle g} \end{bmatrix}$$

with EBV given by

 $\widehat{u_g} = M_g \widehat{\alpha}$ $\widehat{u_n} = M_n \widehat{\alpha} + \widehat{\varepsilon}_n$

NB Single-Step GBLUP is a special case of the above (but in this equivalent model no inversion is needed)

 $M_n = A_{ng} A_{gg}^{-1} M_g$

Fernando, Dekkers and Garrick (2014) GSE

If everyone is genotyped

$$\begin{bmatrix} X'X & X'ZM & X_n \\ M'Z'X & M'Z'ZM + \phi & M_n'Z_n'Z_n \\ Z_n'X_n & Z_n'Z_nM_n & Z_n'Z_n + A^{nn} \lambda \end{bmatrix} \begin{bmatrix} b \\ \alpha \\ \varepsilon_n \end{bmatrix} = \begin{bmatrix} X'y \\ M'Z'y \\ Z_n'y_n \end{bmatrix}$$

These are the MME that form the basis of BayesA, BayesB, BayesC etc

If no one is genotyped

$$\begin{bmatrix} X'X & X'ZM & X_n'Z_n \\ M'Z'X & M'Z'ZM + \phi & M_n'Z_n'Z_n \\ Z_n'X_n & Z_n'Z_nM_n & Z_n'Z_n + A^{nn}\lambda \end{bmatrix} \begin{bmatrix} b \\ \alpha \\ \varepsilon_n \end{bmatrix} = \begin{bmatrix} X'y \\ M'Z'y \\ Z_n'y_n \end{bmatrix}$$

These MME form the basis of traditional pedigree-based BLUP

Single Step HBLUP special case

 $\phi = diagonal \, \sigma_e^2/\sigma_{ai}^2 (general \, locus \, specific) \ \lambda = \sigma_e^2/\sigma_g^2 = (1-h^2)/h^2$

Suppose $\phi = \lambda/2\overline{pq}k$ for k loci (one special choice)

 In this special case, the hybrid model gives the same EPDs for genotyped and non-genotyped animals as does single step HBLUP but without needing any matrix inversions or needing the genomic relationship matrix to be full rank

Computing Strategy

- These hybrid MME are
 - straightforward to form and solve using conventional approaches for pedigrees < 1 million animals
 - straightforward to form and fit using MCMC methods to obtain EPD and accuracies for pedigrees < 1 million animals
 - require advanced computing techniques to be efficiently used for >10 million animals

Computing Since 2004

- No increases in clock speed (often decrease)
- Increase the number of computer cores to increase whole machine power
- Less memory available per core
- Less electricity produced per core
- · Liquid cooling of cores
- Hybrid computing using graphics cards

Genetic Evaluation changes since 2004

- Buy bigger computers with more cores and more memory
- Use just one core while all the others do nothing
 - -Using 1/6, 1/8, or 1/16 computer power available

Parallel Computing

- Need new software
- Need new computing approaches
- Need big problems
 - Have not been able to speed up GenSel using multiple processors or graphics cards unless we have many more genotyped animals
- Single Step using our hybrid model is a perfect example of a problem suited to parallel computing

Challenges

- Few individuals who understand the animal breeding aspects and the computing aspects
- Few individuals who have used MCMC approaches on large-scale problems
- So far unsuccessful in obtaining federal funding for these initiatives – they are seen as "development" rather than "research", "education" or "extension"
- · Market not big enough for venture capital

Summary of New Approach

- Opportunities
 - New algorithms
 - New hardware
 - Technically sound approach without approximations
- Challenges
 - Funding for initial and ongoing developments
 - Developing new approaches along with ongoing research
 - Identifying expertise to assist in development
 - Overcoming the "can't be done" attitude
 - Streamlining interface(s) to association databases