Bruce Golden, Cal-Poly 6/20/14

Eliminating the Approximation Bias in NCE Accuracy Computations with High Performance Gibbs Sampling

B. L. Golden, D. J Garrick, R. Fernando and S. N. Newman

Objective:

Determine if a Gibbs Sampler is better then current approximations for calculating the prediction error variance used in (BIF) accuracy computations.

Better =

• High correlation to inverse diagonal MME elements
• Sufficiently fast on production size problems.
• Provides more information

Does Gibbs Sampler give the same PEV as the inverse elements? $\begin{bmatrix}
\mathbf{X'X} & \mathbf{X'Z} \\
\mathbf{Z'X} & \mathbf{Z'Z} + \mathbf{A}^{-1}\lambda
\end{bmatrix} \begin{bmatrix}
\mathbf{b} \\
\mathbf{u}
\end{bmatrix} = \begin{bmatrix}
\mathbf{X'y} \\
\mathbf{Z'y}
\end{bmatrix}$ $\lambda = \frac{\sigma_e^2}{\sigma_g^2}$

Bruce Golden, Cal-Poly 6/20/14

Correlations of Posterior Means for Various Sampling Strategies							
	sol	1 chain of 20k	1 chain of 100k	5 chains of 4k	10 chains of 2k	10 chains of 3k with 1k burn	5 chains of 20k
sol		.996	1.000	.999	1.000	.996	.999
1 chain of 20k			.998	.994	.996	.987	.993
1 chain of 100k				.998	.999	.993	.997
5 chains of 4k					.999	.998	.999
10 chains of 2k						.996	.999
10 chains of 3k with 1k burn							.999
5 chains of 20k							

Bruce Golden, Cal-Poly 6/20/14

Real World Problem ASA BW, WW, MILK 32,173,703 Equations 647,105,967 NNZ Time to PCG solution 57.706s Time to 10,000 samples from 10 chains at 1k samples each (0 burnin): 196m 14s

Conclusions

- Gibbs sampler resulted in high quality PEV estimates that converged to the inverse of the MME;
- Multi-core, overclocking and heterogeneous computing helped make implementing Gibbs Sampling for PEV tractable;
- Parallel chains started with PCG solutions provided a performance improvement and the same answers.

Future Work

Hickey et al., should be performance programmed and tested with longer parallel chains.