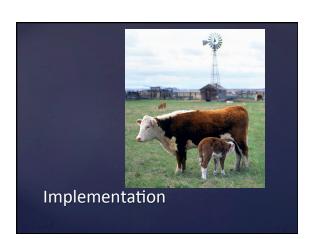


> Replacement cost (R_d)


- > opportunity cost of weaning weight not marketed
 - > Well evaluated
- > postweaning growth and feed intake
 - Less data than weaning weight, adequately(?) evaluated
- > pregnancy (calving) and culling rates
 - > Issues with data recording

> Feed requirements (F_{md}, F_{pd})

- > Indicator traits and prediction models (R2 ≈ 75%)
- > Challenge to simultaneously consider forage characteristics
- > Opportunities for metabolomics?

>Summary

- Some components related to breeding females are measured late-in-life and their evaluation could be facilitated by early-in-life indicator traits including genotypes
- Additional components of the objective are exceedingly expensive to measure and whose evaluation is greatly facilitated by indicator traits and genomic predictions
- > Finally, evaluation depends on accurate recording and appropriate grouping of contemporaries.

>Successful evaluation of efficiency

- > Requires capture of the full range in variation of underlying components
- > Let's not make that data capture too onerous
 - > Think through what data should be reported
- Whole-herd reporting should include information about females that "fail" and leave the system

Successful evaluation of efficiency

- > Disposal date should be routinely reported and coupled with coded descriptors
 - > e.g., age, open, bred late, sold for breeding use or unsoundness: teats, udder, feet, legs, mouth
- Measuring reproductive success and longevity could be enhanced by culling codes
 - > limited in number
 - $\,\succ\,$ focused on the economically relevant traits.

Survival analysis (general)

- > Time to event data
 - > How old is she when she produces 4 calves?
 - > How old is she when she is culled?
- > Dynamic contemporary grouping changing over
 - > Environment years are not all alike
 - > Membership in contemporary group
- > Censoring
 - > Waiting for expression of trait
 - > Left without expression of trait

Survival analysis (statistically enhanced)

- > Categorical data
 - > Cows calve at: 2, 3, 4, etc. years of age
- > Incorporate frailty
 - > Model within group (co)variation; relationships among mates
- > Yields predicted stable age distribution

Geographic effects

- > Economic values change with exposure levels
 - > Heat tolerance
 - > Fescue tolerance
 - > Calving ease

Cow efficiency only part of whole picture

- > Adjust economic values to account for missing information
- > Limited opportunity to break genetic antagonisms
- > Past evaluations of cow efficiency
 - > Focused on ratio measures
 - > May not have accounted of reproduction

Vision

- > Evaluate components from direct measures as indicator traits
- > Combine results via multiple-trait selection indexes to predict efficiency
 - Restricted selection indexes increase output without changing input
 - > Microeconomic production theory as an alternative to simulation for estimating economic weights
- > Limited opportunity to break genetic antagonisms

Biggest impediment: lack of data to evaluate components

