

Introduction

- Beef Quality
 - Marbling
 - Tenderness
- Quality beef consistently satisfies customer expectations for eating and preparation characteristics.
 - Expectations may include:

 - TendernessFlavor, Juiciness and color

 - PackagingEase of preparation

Introduction

- Beef Quality Grade
 - -Composite evaluation of factors that affect palatability of meat
 - Tenderness
 - -These factors include carcass maturity, firmness, texture and color of lean, and the amount and distribution of marbling with the lean.

Introduction

- Beef Carcass Quality Grading based:
 - Degree of Marbling
 - Degree of Maturity
- USDA Beef Quality Grades

 - Choice
- Select
- Standard
- Commercial
- Cutter
- Canner

Introduction

- · Many factors influence beef quality
 - Pre-Harvest Management
 - Post-harvest Management
- Pre-Harvest Management

 - Use of feeding systems that enhance product quality
 Judicious application of growth enhancement technologies; and
 - Adherence to best management practices to avoid quality and tenderness problems associated with effects of morbidity, pre-harvest stress, administration of animal health products, and hormonal status of

Pre-Harvest Management

- · Heritability estimates from several studies indicate that tenderness is moderately heritable (h2 = 0.24 to 0.53) in Bos taurus, and Bos taurus x Bos indicus cattle populations (Koch et al., 1982; O'Conner et al., 1997; Wheeler at al., 1996 and 2001; Wulf et al., 1996).
- Seedstock and commercial producers have relied upon traditional methods, such as progeny testing to obtain beef tenderness information.

Pre-Harvest Management

- Collection of carcass measures of tenderness is a long and expensive process for producers.
- Development of Expected Progeny Differences (EPD's) for tenderness are on the rise in many breed associations.
- Increased number of commercially available DNA markers of genes associated with differences in beef tenderness.

Pre-Harvest Management

- Feeding Systems
 - Grain Feeding
 - Produce carcasses with brighter-colored, finer-textured lean, whiter fat, and more marbling, all which enhances acceptability of retail beef (Schaake et al., 1993; Schroeder et al., 1980; Bowling et al., 1977).
 - Days on Feed
 - Young stocker cattle backgrounded on forages and then transitioned to high-concentrate, finishing diets prior to harvest to assist in developing carcass quality and palatability attributes normally associated with grain-fed beef (Klopfenstein et al., 2000).
 - Most improvements occur in early portion of feeding period (before 112 days and finishing diets longer than 180 days are detrimental to tenderness due to increased maturity; May et al., 1992; McKeith etal., 1985; Miller et al., 1987; Larick et al., 1987, Zinn et al., 1970).

Pre-Harvest Management

- Use of Growth Enhancement Technologies
 - -Beneficial in enhancing growth performance
 - —Some evidence suggests low-potency implants do not adversely affect tenderness; however, repetitive uses of estrogenic implants can increase carcass maturity and multiple lifetime implants may reduces marbling scores (Hardt et al., 1995; Paisley et al., 1999; Platter et al., 2003; Pritchard, 2000).

Pre-Harvest Management

- Health Management and Husbandry
 - Morbidity associated with BRD depresses growth performance of finishing cattle, resulting in lighter carcass weights and lower marbling scores (Gardner et al., 1999; Roeber et al., 2001).
 - Minimizing intramuscular (IM) injections and adherence of Beef Quality Assurance Guidelines for all animal health products helps avoid tenderness problems.
 - Timely application of routine management practices such as castration of male calves (NCBA, 1996; recommends castrate bull calves prior to 7 months of age or prior to develop of secondary sex characteristics.

Pre-Harvest Management

- Avoid Pre-Harvest Stress
 - Pre-harvest stress, either acute or prolonged, depletes muscle glycogen stores, resulting in production of beef with an abnormally high final muscle pH and a characteristically dark lean color (i.e. dark cutting beef) (Ashmore et al., 1973; McVeigh and Tarrant, 1981).
 - Any form of physical of psychological stress among cattle can result in muscle glycogen depletion.

Pre-Harvest Stressors

- Aggressive handling, excitement, or physical exertion of cattle before, during or following transport to the processing plant
- Long transit periods and(or) schedule delays preventing prompt unloading of cattle transported to processing plants
- Mixing of cattle from different sources before harvest, prompting physical activity as animals reestablish and an order of social dominance within the mixed group

Pre-Harvest Stressors

- Extremes in climatic conditions, including both extremely hot or cold, wet weather
- Extended fasting periods or extended periods of low energy diets prior to harvest
- Females exhibiting behavioral estrus near the time of harvest
- Cattle differ in behavior and temperament and respond dramatically different when subjected to various pre-harvest stressors.

NCBA, 2006 Pre-harvest cattle management practices for enhancing beef tenderness

History

- · National Beef Quality Audit, 1991
 - –Top ten producer controllable concerns
 - Excess external fa
 - Excessive weights/box
 - Too high incidence of injection site blemishes
 - Eycess seam fat
 - Low overall cutability
 - Low overall uniformity
 - Inadequate tenderness
 - Too frequent bruise damage
 - Too many dark cutters
 - Too many large ribeyes/loineyes

History

- By 2000, Top ten greatest quality concerns according to resposes of purveyors and retailers;
 - Insufficient marbling
 - Lack of uniformity in cuts
 - Inadequate tenderness
 - Excess fat cover
 - Inadequate flavor
 - Too heavy cut weights
 - Too Large Ribeyes
 - Low Cutability
 - Inadequate juiciness
 - Inadequate overall palatability

History

- New challenges emerged by 2005, Top ten changes made by seedstock producers:
 - Improved genetics (using performance)
 - Improved genetics (using physical traits)
 - Improved genetics (using ultrasound)
 - Increased record keeping
 - Changed injection site location
 - Changed vaccination program
 - Improved genetics (using carcass traits)
 - Joined alliance/supply chain
 - Increased individual identification
 - Improved handling practices

National Beef Quality Audit, 2011

- Top three challenges identified
 - -Food Safety
 - Eating Satisfaction
 - -How and where the cattle where raised
- Top three responses from pre-harvest segments:
 - -Animal handling
 - Preventative health programs
 - -Nutritional management

National Beef Quality Audit, 2011

- No two market sectors define "Quality" the same way
- Increased transparency is a must
- Increased importance of food safety and eating satisfaction across all sectors
- Additional opportunities
 - -Produce beef with more ideal lean:fat ratios
 - Managing cattle and carcass weights for more uniform, consistent products

National Beef Quality Audit, 2011

- Packer sector findings:
 - -Improved individual animal id
 - Increased awareness of the importance of animal handling
 - –Increased hot carcass weights
 - -Increased availability of Prime and Choice
 - Increased percentage of conforming carcasses
 - -Human and instrument grading are aligned

National Beef Quality Audit, 2011

- Producer sector findings:
 - -Healthy cattle equal quality
 - –Injection site improvements
 - -Low-stress handling is a priority
 - -BQA is becoming widespread
 - -Identification and traceability

Tools for selection for marbling and tenderness

- Carcass EPD's
- Ultrasound EPD's
- Genomics
- -Genomic enhanced EPD's
- New Tools with existing technology

Carcass EPD's

- Carcass Weight
- Marbling
- Fat thickness
- Ribeye Area
- Yield Grade
- Percent Retail Products
- Days to Finish
- Tenderness

Genomic Enhanced EPD's

- Enhance predictability of current selection tools
- Achieve more accuracy on EPD's for younger animals
- Characterize genetics for traits that are difficult or expensive to measure (i.e. feed efficiency, carcass traits in breeding stock or maternal traits in bulls).

