The Power of Economic Selection Indices to Make Genetic Change in Profitability

Darrh Bullock, University of Kentucky Donnell Brown, R. A. Brown Ranch Larry Keenan, Red Angus Association of America

History of Selection

•Visual Appearance/Local Adaptation – Breed Creation

History of Selection

- •Visual Appearance/Local Adaptation Breed Creation
- •Actual Performance Robert Bakewell, Jay Lush

History of Selection

- •Visual Appearance/Local Adaptation – Breed Creation
- •Actual Performance Robert Bakewell, Jay Lush
- •Breeding Values (EPD) C. R. Henderson

History of Selection

- •Visual Appearance/Local Adaptation Breed Creation
- •Actual Performance Robert Bakewell, Jay Lush
- •Breeding Values (EPD) C. R. Henderson
- •Inclusion of Genomics Molecular Enhanced EPDs

+ Data + Pedigree = EPD

Evolution of Seedstock Selection Tools

- •Visual
- •Visual + Actual Weights
- •Visual + Adjusted Weights and Ratios
- •Visual + EPDs
- •Visual + EPDs (ERTs)
- •Visual + Genomically Enhanced EPDs
- •Visual + Selection Indices

48.0	LOT	[L-] }	Birth	Date	9-17	-2014	1	YE	Bull	+179	58665		SC	Tat	too: 4	
Adj. Yrlg Scr Cir		40%			0/ .					. 2			92 /4	1000	11/	
35.94		EM	-	MI	LK	-	MKH	F 3		MW	- 20	M	н	- 12	SEN	
Adj.	+9	/ 409	6 +	32 /	4%		N/A		+52	1 25		+.5 /	25%	-20	.54 /	95%
% IMF	+58	CW			MAR			83 /			F			SW	/eanin	9
	+58	/ 3	%	+1.1	14 /	4%	+.	83 /	15%	-	016	20	%	+56.	11 /	15%
% IMF Ratio														SF	eedlo	
87		#	Wytty I	n Foc	us non			#S	AF Foc	us of E	R			+66.	85 /	15%
Adj. REA	AAR Te	n X 700	8 SA					My	tty Cou	untess	906				\$Grid	
10.1	#15719	841 #	VAR La	idy Ke	iton 5	551				tor 22				+52.	20 /	3%
REA Batio			-			3 1		+H	SAF La	dy Kel	on 504	4B			\$QG	
95			- Company		To the	h 371	115	- 60		v New	0	4407		+45.	07 /	3%
Rib Fat	2 Bar N			ena M	ne mg	n 3/14	5			ecision		1407			\$YG	
20	+16407			iectiv	e 863					ctive T		26		+7.1	3 /	30%
Rib Fat				,				+5	Miss	723 Ri	to Plus	1884			Beef	
Ratio 100														+168	.35 /	1%
Adi	BW		CALV	EAS	E	BWI	3	ADJ	ww	- 1	WWR		ADJ Y	w	Y	WR
Rump Fat	90			1		107		48	30		85		100	3	•	17
Rumn Fat	Act B	D:	m's Pi		ion Re	cord	YV	ID.	9/	IME D	m's U	trasoui	nd Prod	uction	Record	LEAT
Ratio	17-8		3-10		3-1		3-1			-98		-95	100	-97		-89
67			_		_	_	_	_		_	_	_		_		
18 33	ww	YW	DMI	YH	sc	DOC	HP	CEM	MILK	atw	MH	CW	Marb	RE	Fat	TEND
		/	98	69	21	58	63	26	9	25	53	2	6	8	24	89
The da	m of	this	oros	pec	t is	a fli	ush	sıste	er to	the	\$12	U, O(00 2 Milk	Bar	Mil	е

What is a selection index?

$$SI = a_1 * EPD_1 + a_2 * EPD_2 + a_1 * EPD_1 ... + a_i * EPD_i$$

a_i = Economic Weighting for Trait i

EPD_i = Expected Progeny Difference for Trait i

SI difference is expected value difference per

calf

Example

SI = 2*CED + 1.5*WW + .25*Milk

 Bull A
 Bull B

 CED = 7
 CED = 15

 WW = 40
 WW = 35

 Milk = 15
 Milk = 11

 SI = \$78
 SI = \$85

Bull B has \$7/calf increased value

Why Selection Indices?

Profit Motivated

Why Selection Indices?

Profit Motivated

Profit = Income - Costs

Why Selection Indices?

- Profit Motivated
- •Breeding Objectives Compatible
- •Multi-trait Selection
- •Simple

Do Selection Indices Work?

Field-test for \$B

Expected Difference Based on \$B values = \$187.38

Actual Difference in Carcass Value = \$215.47

Field-test conducted by Gardiner Angus Ranch, Top Dollar Angus, Inc., Triangle H Grain and Cattle Co. and Zoetis, Inc. January 2017.

http://www.cattlenetwork.com/sites/protein/files/Field%20 Test%20%24 Beef.pdf

What is Available

- •Terminal Index
- •Weaning/Replacement Index
- •All-Purpose Index

- •Income based on carcass merit
- •No replacements retained

					Trait				
Index	CED	BW	ww	YW	Intak	PWG	cw	Quality	Yield
Angus									
\$Feedlot			Χ	Χ	Х				
\$Grid							Χ	Х	Х
\$Beef			Χ	Χ	Х		Χ	Х	Х
Beefmaster									
Terminal			Χ	Χ				X	Χ
Charolais									
Terminal Sire Profit		Χ	Χ	Χ			Χ	Х	Χ
Gelbvieh									
FPI	Х		Χ		Х	Χ	Х	Х	Х
EPI				Χ	Х	Χ			

Terminal Index

- •Income based on carcass merit
- •No replacements retained
- •Caution most place little to no emphasis on calving ease
- •Intake is component of many, but not all

Weaning/Replacement Index

- •Targeted for commercial cow/calf cattlemen
- •Calves marketed at weaning
- •Replacement heifers are retained
- •Calving ease is considered, but may not be adequate if large numbers of heifers are to be bred
- •Limited influence of reproductive performance
- ·Limited influence of cow maintenance
- •Little emphasis on calving ease maternal

All-Purpose Index

- •Income primarily based on carcass merit
- •Replacement heifers are retained

All-Purpose Index

- •Income primarily based on carcass merit
- •Replacement heifers are retained
- ·Calving ease emphasis varies
- ·Limited information on feed efficiency/intake
- ·Limited information on cow maintenance
- •Varying levels of information on reproductive performance

Keys to Successful Implementation

- Develop breeding objectives
 - Management
 - Marketing
 - •Environment
- •Identify selection index that most closely matches your breeding objectives

\$Wean - \$Beef

- •\$Wean
- •Birth Wt, Wean Wt, Milk, Mature Size
- \$Beef
- •Wean Wt, Year Wt, Intake, Carc Wt, Quality, Yield

Correlation W-B = .52

Outlier Bull

- •\$W = -\$2.78
 - •Off the percentile chart on the bottom side
- •\$B = \$172.25
 - •Off the percentile chart on the top side

\$Wean - \$AP1

- •\$Wean
- Birth Wt, Wean Wt, Milk, Mature Size
- •\$AP1
 - •\$W50\$B50

Correlation W-AP1 = .87

Outlier Bull

- •\$W = \$22.68
 - •\$24 below population average
- •\$AP1 = \$22.68
 - •\$11 above population average

\$Wean - \$AP2

- •\$Wean
- •Birth Wt, Wean Wt, Milk, Mature Size
- •\$AP2
 - •\$W75\$B25

Correlation W-AP2 = .97

Outlier Bull

- •\$W = \$35.93
 - •\$10 below population average
- •\$AP2 = \$31.28
 - ullet\$2 above population average

Keys to Successful Implementation

- Develop breeding objectives
 - Management
 - Marketing
 - Environment
- •Identify selection index that most closely matches your breeding objectives
- •Be cautious of traits, included in the index, that do not have a economic (income/cost) value to your production system

Keys to Successful Implementation

- •Don't make the mistake of 'sitting on the sidelines' if the selection index scenario doesn't perfectly match your operation
- •Do not panic if market values change; selection indices are robust

Red Angus Correlation

- ➤ HB vs HB without CED: 0.97
- > HB vs HB without WW or ADG: 0.93
- ➤ HB vs HB without Carcass (Marb & YG): 0.99
- > HB vs HB without Carcass or Feedyard: 0.89
- ➤ HB vs HB without STAY: 0.74

Build an Index Workshop 2015 Red Angus Summit

Allow Audience to Change the Index Economic Weighting Factors and Evaluate the Difference in the Resulting Indices.

	ience De	velope	d Indice	S
All Purpose A ERT	Calving Ease Weighting	Growth Weighting	Carcass Weighting	Repro Weighting
ERT Wting (0 to 10)	7	Crown resignang	ourouse rreighting	repre reigning
1				

Aud	ience De	velope	d Indice	S
All Purpose A ERT	Calving Ease Weighting	Growth Weighting	Carcass Weighting	Repro Weighting
RT Wting (0 to 10)	7	2		

	ienc	e De	vel	ope	ed I	nd	ice	S			
All Purpose A ERT	Calving Ease	e Weighting	Growth W	/eighting	Carca	ass Weig	ahtina	Re	pro We	iahtina	1
ERT Wting (0 to 10)	7		2			5	,g		9		_
EPDs for each ERT	CED	BW	ww	YW							

Aud	ienc	e De	vel	оре	ed I	n	dice	S			
ERT	Calving Eas	e Weighting	Growth W	/eighting	Carc	ass W	/eighting	Re	pro We	ighting	_
ERT Wting (0 to 10)	7	, ,	2			5			9		
EPDs for each ERT	CED	BW	WW	YW	MARB	YG	REA FAT				

Aud	ienc	e De	vel	оре	ed I	n	dice	S		
ERT	Calving Eas	e Weighting	Growth W	eighting	Carca	ass We	eighting	Re	pro We	ighting
ERT Wting (0 to 10)									9	
EPDs for each ERT	CED	BW	WW	YW	MARB	YG I	REA FAT	CEM	STAY	HPG ME

Aud	ienc	e De	vel	оре	ed l	n	di	ce	S			
ERT	Calving Eas	e Weighting	Growth W	eiahtina	Carc	ass V	/eighti	na	Re	pro We	iahtin	
ERT Wting (0 to 10)	-	7	2	0 0		5	<u> </u>	Ŭ		9	<u> </u>	
EPDs for each ERT	CED	BW	ww	YW	MARB	YG	REA	FAT	CEM	STAY	HPG	ME
EPD Weighting	7	3	8	2								

All Purpose A	Calving Eas	e Weighting	Growth W	eighting	Carc	ass V	/eightii	ng	Re	pro We	ighting	1
ERT Wting (0 to 10)	7	,	2	- U - U		5	<u> </u>	Ŭ		9	,	_
EPDs for each ERT	CED	BW	WW	YW	MARB	YG	REA	FAT	CEM	STAY	HPG	ME
EPD Weighting	7	3	8	2	3	2	3	2				

	ienc	e De	vel	оре	ed l	n	di	ce	S			
All Purpose A ERT	Calving Fas	e Weighting	Growth W	/eighting	Carc	ass V	Veighti	na	Re	pro We	iahtin	1
ERT Wting (0 to 10)		7	2	99		5	- Ungine	.9	- 11	9	3	_
EPDs for each ERT	CED	BW	ww	YW	MARB	YG	REA	FAT	CEM	STAY	HPG	ME
EPD Weighting	7	3	8	2	3	2	3	2	2.5	2.5	2.5	2.5

		e weighting	Growth W	/eighting	Carc	ass V	Veighti	ng	Re	pro We	ightin	g
RT Wting (0 to 10)		7	2			5				9		_
PDs for each ERT	CED	BW	WW	YW	MARB	YG	REA	FAT	CEM	STAY	HPG	ME
PD Weighting	7	3	8	2	3	2	3	2	2.5	2.5	2.5	2.
RT Wting (0 to 10)		9	5			8				10		L
PDs for each ERT	CED	BW	ww	YW	MARB	YG	REA	EAT	CEM	STAY	Luno	
								rA1				IVIL
PD Weighting	5	5	10	0	8	2	0	0	0	5	4	

And	iono	e De	wal	one	A I	'n	Дi	co	·C			
All Purpose A												
ERT	Calving Eas	e Weighting	Growth V	Veighting	Carc	ass V	Veighti	ng	Re	pro We	ighting	J
ERT Wting (0 to 10)		7		2		5				9		
EPDs for each ERT	CED	BW	WW	YW	MARB	YG	REA	FAT	CEM	STAY	HPG	ME
EPD Weighting	7	3	8	2	3	2	3	2	2.5	2.5	2.5	2.5
All Purpose B ERT	Calving Eas	e Weighting	Growth V	Veighting	Carc	ass V	Veighti	ng	Re	pro We	ighting	9
ERT Wting (0 to 10)		9		5		8				10		
EPDs for each ERT	CED	BW	WW	YW	MARB	YG	REA	FAT	CEM	STAY	HPG	ME
EPD Weighting	5	5	10	0	8	2	0	0	0	5	4	1
All Purpose C	Cabina Fas	- W-:	C#- 1	0/=:=b4:==	C===	1/	/-:-b#	1	l n-	18/-	:=1:4:=	
ERT	Calving Eas	e Weighting		Veighting	Carc		Veighti	ng	Re	pro We	ignting	3
ERT Wting (0 to 10)		1		8		3				6		
EPDs for each ERT	CED	BW	WW	YW	MARB	YG	REA	FAT	CEM	STAY	HPG	ME
EPD Weighting	3	7	3	7	2	8	0	0	0	5	0	5

Results	
Name	Index A
1BWJ JULIAN 17P	1%
BECKTON JULIAN GG B571	1%
MUSHRUSH LOCK 'N' LOAD U213	10%
BIEBER ROLLIN DEEP Y118	13%
FEDDES BIG SKY R9	15%
WEBR TC CARD SHARK 1015	33%
BECKTON EPIC R397 K	40%
BFCK CHEROKEE CNYN 4912	52%
LCHMN GRANDCANYON 1244G	56%
5L NORSEMAN KING 2291	67%

Results		
Name	Index A	Index B
1BWJ JULIAN 17P	1%	1%
BECKTON JULIAN GG B571	1%	4%
MUSHRUSH LOCK 'N' LOAD U213	10%	8%
BIEBER ROLLIN DEEP Y118	13%	6%
FEDDES BIG SKY R9	15%	16%
WEBR TC CARD SHARK 1015	33%	30%
BECKTON EPIC R397 K	40%	21%
BFCK CHEROKEE CNYN 4912	52%	34%
LCHMN GRANDCANYON 1244G	56%	40%
5L NORSEMAN KING 2291	67%	57%

Results			
Name	Index A	Index B	Index C
1BWJ JULIAN 17P	1%	1%	9%
BECKTON JULIAN GG B571	1%	4%	42%
MUSHRUSH LOCK 'N' LOAD U213	10%	8%	11%
BIEBER ROLLIN DEEP Y118	13%	6%	5%
FEDDES BIG SKY R9	15%	16%	26%
WEBR TC CARD SHARK 1015	33%	30%	26%
BECKTON EPIC R397 K	40%	21%	6%
BFCK CHEROKEE CNYN 4912	52%	34%	20%
LCHMN GRANDCANYON 1244G	56%	40%	19%
5L NORSEMAN KING 2291	67%	57%	50%
THOROLINI WY TRING 2201	01 70	0170	0070

Results				
Name	Index A	Index B	Index C	HB Index
1BWJ JULIAN 17P	1%	1%	9%	3%
BECKTON JULIAN GG B571	1%	4%	42%	1%
MUSHRUSH LOCK 'N' LOAD U213	10%	8%	11%	15%
BIEBER ROLLIN DEEP Y118	13%	6%	5%	32%
FEDDES BIG SKY R9	15%	16%	26%	23%
WEBR TC CARD SHARK 1015	33%	30%	26%	46%
BECKTON EPIC R397 K	40%	21%	6%	17%
BFCK CHEROKEE CNYN 4912	52%	34%	20%	40%
LCHMN GRANDCANYON 1244G	56%	40%	19%	84%
5L NORSEMAN KING 2291	67%	57%	50%	80%

Results (Correlations)

- •Corr(A:B) 0.93
- •Corr(B:C) 0.87
- •Corr(A:C) 0.65

Keys to Successful Implementation

- •Identify traits of economic importance to your production system that are not in the index and select for those traits in tandem with the SI
- Realize some traits in an index have thresholds or optimum is not maximum
 - Calving Ease
 - Milking Ability

Threshold Traits

SI = 2*CED + 1.5*WW + .25*Milk

D 11 4	D 11 D	
Bull A	Bull B	
CED = 7	CED = 15	CED =10
WW = 40	WW = 35	
Milk = 15	Milk = 11	
SI = \$78	SI = \$85	SI =\$75

What does the future hold?

- •Increased number of ERTs
- •Increased number of selection indices targeted to specific production systems
- Improved genetic evaluations due to improved genomics technology and inclusion of commercial data
- •Multi-breed indices
- Accuracy values for indices

Take Home Messages!

- •Selection indices are simple to use, facilitate genetic improvement in profitability, available for major production/marketing systems
- •Know what's under the hood What traits are included? Is calving ease acceptable for my intended use? Do I need to select for or monitor additional traits?
- •Selection indices are robust even in changing markets and varying production/marketing systems

