Exploring Variation in Beef Cattle Water Intake and Utilization

Cashley Ahlberg Kansas State University

KANSAS STATE

Introduction: Water

- Beef cattle consume approximately 760 billion liters of water per year (Beckett and Oltjen, 1993)
- Environmental factors, diet, breed, and body weight impact water intake (Arias and Mader, 2011)
- Interaction between these factors make it challenging to determine daily water intake requirements

KANSAS STATE

Introduction: Heat Stress

- Between 1.69 and 2.36 billion dollars loss in United States due to heat stress (St-Pierre et al., 2003)
 - Cattle trying to reduce heat load could be reason for increased water intake during the summer (Beede and Collier, 1986)
 - Primary way reduce heat load is through evaporative cooling
- 5-80% of United States land mass affected by drought past 7 years (NOAA, 2017)
 - -2012 worst drought since 1950's

KANSAS STATE

Introduction: Heat Stress

- Global warming effects soil infertility, water scarcity, grain yield and quality, and diffusion of pathogens which could impair animal production (Nardone et al., 2010)
 - Predict 25% loss in animal production in developed countries an may be more server in developing
- Cattle in hot environment drink 2-3 times more than cattle in cooler environments (Nardone et al., 2010)

KANSAS STATE

Introduction: Adaptability

- Arid land ruminants can graze far away from water sites and withstand prolonged periods of water deprivation
 - -Drink a large amount quickly
 - -Less frequent visits
 - -Livestock that reduce water intake, tend to reduce feed intake, and have a slower metabolic rate
 - -Minimize loss of water through urine and feces

KANSAS STATE

(Mirkena et al., 2010)

Introduction: Test Day length

- Currently no guidelines for water intake
- Shortened test day length 35 days feed intake Wang et al. (2006) and Archer et al. (1997)
- Collecting feed and water intake at the same time

Objectives:

- To characterize daily water intake in individual beef cattle
 - -Test day length
 - -Individual daily intakes
 - -Difference between groups
 - -Water efficiency
- · Develop water intake prediction equation
- · Characterize adaptability

KANSAS STATE

Material and Methods: Data

- 579 crossbred steers
- Five groups
 - -Group 1 (May 2014 to October 2014, Summer, n=117)
 - -Group 2 (November 2014 to March 2015, Winter, n=116)
 - -Group 3 (May 2015 to September 2015, Summer, n=118)
 - -Group 4 (June 2016 to October 2016, Summer, n=105)
 - -Group 5 (January 2017 to May 2017, Winter, n=123)

KANSAS STATE

Material and Methods: Data

- FI and WI collected using an Insentec System
 - -4 pens per group (~30 steers per pen)
 - -6 feed bunks and 1 water bunk per pen
 - -Access to shade under barn
- All groups fed a growing diet
 - -15% corn, 51.36% sweet bran, 28.44% hay, 5.2% supplement
- Groups 1-3 managed using slick bunk feed call
- Groups 4-5 access to ab-libtium feed
- All groups access to ab-libtium water

Group 1	Group 2	Group 3	Group 4	Group 5
25.03 (3.11)	4.21 (5.99)	23.17 (4.60)	27.85 (2.48)	9.45 (5.96)
71.33 (9.98)	70.98 (16.31)	76.24 (10.55)	69.10 (8.30)	63.33 (16.36
11.33 (3.43)	11.56 (4.59)	11.21 (3.16)	10.06 (2.92)	12.39 (5.14)
22.33 (6.68)	7.90 (4.52)	21.10 (8.48)	23.90 (5.38)	12.51 (5.74)
in °C, relative	humidity meas	sured as a perce	ent, wind speed	I measured as
	71.33 (9.98) 11.33 (3.43) 22.33 (6.68)	71.33 (9.98) 70.98 (16.31) 11.33 (3.43) 11.56 (4.59) 22.33 (6.68) 7.90 (4.52)	71.33 (9.98) 70.98 (16.31) 76.24 (10.55) 11.33 (3.43) 11.56 (4.59) 11.21 (3.16) 22.33 (6.68) 7.90 (4.52) 21.10 (8.48)	71.33 (9.98) 70.98 (16.31) 76.24 (10.55) 69.10 (8.30) 11.33 (3.43) 11.56 (4.59) 11.21 (3.16) 10.06 (2.92)

Group	WI	Wlbwt ^b	DMI	Mid Weight	ADG
1	40.50 (8.00)	10.75 (3.35)	9.93 (2.67)	401.45 (29.09)	1.39 (0.29)
2	28.23 (5.63)	6.94 (2.55)	10.18 (2.70)	426.64 (39.80)	1.74 (0.34)
3	36.37 (6.75)	8.61 (2.96)	10.27 (2.52)	445.49 (33.46)	1.46 (0.31)
4	49.46 (13.07)	10.89 (3.91)	10.57 (2.92)	457.18 (30.22)	1.27 (0.27)
5	34.92 (4.84)	8.41 (1.87)	11.66 (2.43)	416.72 (39.37)	1.84 (0.29)
aWI, D	MI, Mid Weight,	and ADG are me	asured in kilogra	ms	

• Milking dairy cows -81.5 kg (Meyer et al., 2004) • Growing Steers (GrowSafe System) -29.98 kg (Brew et al., 2011) -Bos indicus crosses used • Feedlot Steers (pen data) -37.85 kg (Mader and Davis, 2004)

Groupa	WI Percent ^b	Temperature ^c	Humidity ^d	Wind Speed ^e	Solar ^f
1	10.75 ^g	9.898	10.07 ^g	10.078	9.898
2	6.94 ^h	8.52 ^h	8.30 ^h	8.36 ^h	8.63h
3	8.61 ⁱ	7.98 ⁱ	8.29 ^h	8.31 ^h	8.05i
4	10.89 ^j	9.70 ^j	9.85 ⁱ	9.83 ⁱ	9.63 ^j
5	8.41 ^k	9.40 ^k	8.99 ^j	8.99 ^j	9.25 ^k
slick bank manager later intakes as a percent of b later intakes as a percent of b later intakes as a percent of b later intakes as a percent of b	sich siedales intdien flut were collected diri- nat, ab-lib capals greep that hal ab-libbane ody weight when no weather fasters were zo ody weight when stepse interprate was not ody weight when steperature are delative la ody weight when temperature, relative hands	access to feed intake. counted for counted for midity were accounted for lifty, and wind speed were accounted	for	et were collected during the winter, S	lk equals groups that were us
ater intakes as a percent of b Significant difference between	sdy weight when temperature, relative humic on groups for each analysis	ity, wind speed, and solar radiation	were accounted for		

2 0.38 3 0.61	
3 0.61	0.38
	0.61
4 0.44	0.44
5 0	0.6

Material and Methods: Water intake Prediction • Prediction model

 $WI=b \downarrow 0 + b \downarrow 1 *dMWTS+b \downarrow 2 *DMI+b \downarrow 3 *TAVG+b \downarrow 3$

· Factors included in regression model

*HAVG+b↓4 *WSPD+b↓5 *ATOT

- Daily metabolic weights (dMWTS), DMI, temperature (TAVG), relative humidity (HAVG), wind speed (WSPD) and solar radiation (ATOT)
- Calculate individual daily weights using regression

dWTS = Intercept + ADG*day

- 3 different prediction equations
 - All groups, Summer, and Winter

KANSAS STATE

Water Prediction:						
	All	Summer	Winter	All	Summer	Winter
Intercept	-4.10	-9.68	-4.25			
DMI	2.00	2.32	1.77	0.124	0.155	0.291
MWTS	0.22	0.11	0.22	0.055	0.039	0.032
TAVG	0.56	1.31	0.26	0.194	0.138	0.032
HAVG	-0.14	-0.17	-0.09	0.025	0.006	0.032
WSPD	-0.16	-0.27	-0.06	0.002	0.002	0.0
ATOT	0.14	-0.03	0.13	0.001	0.0	0.002
R ²			ľ	0.40	0.34	0.39
KANSAS S	STATE SITY					

Material and Methods: Water Efficiency

- Each group was divided into low, medium, and high intake
- Residual water intake (RWI)

RWI=WI-eWI

 $eWI=b\downarrow 0+b\downarrow 1$ $DMI+b\downarrow 2$ MMWT

• Water to gain (W/G)

W/G = WI(kg)/ADG(kg)

 Difference between low, medium, and high for RWI and W/G

			- 229
Trait ^b	Low	Medium	High
Group 1			
Wibwt	8.39a	9.90 ^b	11.96°
RWI	-5.06a	-0.68 ^b	5.74°
W/G	27.46a	29.25a	32.77 ^b
Group 2			
Wlbwt	5.66a	6.50 ^b	7.65°
RWI	-2.48a	-0.56 ^b	3.06c
W/G	16.03a	16.29a	18.29a
Group 3			
Wlbwt	6.85a	8.16 ^b	9.39°
RWI	-4.15a	-0.64 ^b	4.54°
W/G	23.32a	26.16 ^b	27.77b
Group 4			
Wlbwt	8.50a	10.06 ^b	13.94°
RWI	-7.88ª	-2.36 ^b	10.24°
W/G	32.32a	40.53b	49.69°
Group 5			
Wlbwt	7.66a	8.56 ^b	8.98°
RWI	-1.51a	0.05 ^b	1.53°
W/G	18.11 ^a	19.83 ^b	20.05b

Material and Methods: Adaptation

- Splines were used to illustrate pattern for groups 1-5 between different periods
- ADG was calculated for each animal for baseline, step down, restriction using regression

KANSAS STATE

Conclusion:

- Water intake test day duration can be shortened to 35 to 42 days
- Differences in water intake between groups when weather factors are not accounted for
- Water intakes are similar between groups when weather factors are accounted for
- Water intake is predictable
 -R² range from 0.34 to 0.40 correlation

KANSAS STATE

Conclusion:

- There are differences between low, medium and high water intake in their water efficiency measures
- Majority of animals have a drop in ADG from baseline to step down, then a recovery from step down to restriction

KANSAS STATE

Future Work:

- Heritability estimates of water intake
- Estimate breed composition using genotypes
 - -Breed effects for water intake
 - -Breed effects for adaptability
- · Further adaptability analysis

