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Long before genomics found its way into livestock breeding, most of the excitement pertaining 

to research into livestock improvement via selection involved developments in the BLUP mixed 

model equations, methods to construct the inverse of the pedigree relationship matrix  

recursively (Henderson, 1976; Quaas, 1988), parameter estimation and development of new, 

measureable traits of economic importance.  In particular for several decades (1970’s through the 

early 2000’s), lots of resources were invested in finding the most useful evaluation model for 

various traits. Since the American Simmental Association published the first sire summary in 

1971, the use of pedigree and phenotypic information has been the major contributing factor to 

the large amount of genetic progress in beef industry.   

During the late 1970’s and early 1980’s, geneticists developed techniques that allowed the 

investigation of DNA, and they discovered several polymorphic markers in the genome. Soller 

and Beckmann (1983) described the possible uses of new discovered polymorphisms, and 

surprisingly, their vision of using markers was not much different than how DNA is used today 

in the genetic improvement of livestock.  They surmised that markers would be beneficial in 

constructing more precise genetic relationships, followed by parentage determination, and the 

identification of quantitative trait loci (QTL; genes that affect a quantitative trait). The high cost 

of genotyping animals for such markers probably prevented the early widespread use of this 

technology. However, valuable information came along with the first draft of the Human genome 

project in 2001 (The International SNP Map Working Group, 2001): the majority of the genome 

sequence variation can be attributed to single nucleotide polymorphisms (SNP).  

After all, what are SNPs? The genome is composed of 4 different nucleotides (A, C, T, and G). If 

you compare the DNA sequence from 2 individuals, there may be some positions were the 

nucleotides differ. The reality is that SNPs have become the bread-and-butter of DNA sequence 

variation (Stonecking, 2001) and they are now an important tool to determine the genetic 

potential of livestock.  Even though several other types of DNA markers have been discovered 
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(e.g., microsatellites, RFLP, AFLP) SNPs have become the main marker used to detect variation 

in the DNA.  Why is this so?  An important reason is that SNPs are abundant, as they are found 

throughout the entire genome (Schork et al., 2000). There are about 3 billion nucleotides in the 

bovine genome, and there are over 30 million SNPs or 1 every 100 nucleotides is a SNP. 

Another reason is the location in the DNA: they are found in introns, exons, promoters, 

enhancers, or intergenic regions. In addition, SNPs are now cheap and easy to genotype in an 

automated, high-throughput manner because they are binary.  

One of the benefits of marker genotyping is the detection of genes that affect traits of 

importance.  The main idea of using SNPs in this task is that a SNP found to be associated with a 

trait phenotype is a proxy for a nearby gene or causative variant (i.e., a SNP that directly affects 

the trait).  As many SNPs are present in the genome, the likelihood of having at least 1 SNP 

linked to a causative variant greatly increases, augmenting the chance of finding genes that 

actually contribute to genetic variation for the trait.  This fact contributed to much initial 

excitement as labs and companies sought to develop genetic tests or profiles of DNA that were 

associated with genetic differences between animals for important traits.  Suddenly, marker 

assisted selection (MAS) became popular. The promise of MAS was that since the test or the 

profile appeared to contain genes that directly affect the trait, then potentially great genetic 

improvement could be realized with the selection of parents that had the desired marker profile.   

It is not hard to see this would work very well for traits affected by one or a couple of genes. In 

fact, several genes were identified in cattle, including the myostatin gene located on chromosome 

2. When 2 copies of the loss-of-function mutation are present, the excessive muscle hypertrophy 

is observed in some breeds, including Belgian Blue, Charolais, and Piedmontese (Andersson, 

2001).   Another example of that has been shown to have a small, but appreciable effect on beef 

tenderness pertains to the Calpain and Calpastatin (Page et al., 2002) and a genetic test was 

commercialized by Neogen Genomics (GeneSeek, Lincoln, NE) and Zoetis (Kalamazoo, MI). It 

is important to notice that all those achievements were based on few SNPs or microsatellites 

because of still high genotyping costs. 

Although there were a few applications in beef cattle breeding, MAS based on a few markers 

was not contributing appreciably to livestock improvement simply because most of the traits of 

interest are quantitative and complex, meaning phenotypes are determined by thousands of genes 
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with small effects and influenced by environmental factors. This goes back to the infinitesimal 

model assumed by Fisher (1918), where phenotypic variation is backed up by a large number of 

Mendelian factors with additive effects. Some lessons were certainly learned from the initial stab 

at MAS: some important genes or gene regions (quantitative trait loci or QTL) were detected; 

however, the same QTL were not always observed in replicated studies or in other populations, 

meaning most of them had small effects on the traits (Meuwissen et al., 2016).   In addition, the 

number of QTL associated with a phenotype is rather subjective and depends on the threshold 

size of the effect used for identifying QTL (Andersson, 2001).  Simply put, it appears there are 

only a few genes that contribute more than 1% of the genetic variation observed between animals 

for any given polygenic trait.   

Initial allure of MAS led to a massive redirecting of grant funds to this type of research, greatly 

contributing to the current shortage of qualified quantitative geneticists in animal breeding 

(Misztal and Bertrand, 2008).  Despite some of the initial setbacks using MAS, in 2001, some 

researchers envisioned that genomic information could still help animal breeders to generate 

more accurate breeding values, if a dense SNP assay that covers the entire genome became 

available. Extending the idea of incorporating marker information into BLUP (using genotypes, 

phenotypes and pedigree information),  introduced by Fernando and Grossman (1989), 

Meuwissen et al. (2001) proposed some methods for what is now termed genome-wide selection 

or genomic selection (GS).  This paper used simulation data to show that accuracy of selection 

was doubled using genomic selection compared to using only phenotypes and pedigree 

information.  With the promise of large accuracy gains, this paper generated enormous 

excitement in the scientific community.  Some conclusions from this study included: 1) using 

SNP information can help to increase genetic gain and to reduce the generation interval; 2) the 

biggest advantage of genomic selection would be for traits with low heritability; 3) animals can 

be selected early in life prior to performance or progeny testing. With all of this potential, 

genomic selection was an easy sell. 

However, it took about 8 years from the publication of the Meuwissen et al. (2001) paper until 

the dense SNP assay required for genomic selection became available for cattle. Researchers 

from USDA, Illumina, University of Missouri, University of Maryland, and University of 

Alberta developed a SNP genotyping assay, allowing the genotyping of 54,001 SNP in the 
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bovine genome (Illumina Bovine50k v1; Illumina, San Diego, CA). The initial idea of this 

research was to use the SNP assay or chip for mapping disease genes and QTLs linked to various 

traits in cattle (Matukumalli et al., 2009). In 2009, a report about the first bovine genome entirely 

sequenced (The Bovine Genome Sequencing and Analysis Consortium et al., 2009) was 

published as an output of a project that cost over $50 million and involved about 300 researchers. 

With the cattle sequence known, it was possible to estimate the number of genes in the bovine 

genome: somewhere around 22,000. Armed with the tools to generate genomic information, GS 

became a reality.  

Among all livestock industries in USA, the dairy industry was the first to use genomic selection. 

More than 30,000 Holstein cattle had been genotyped for more than 40k SNP by the end of 2009 

(https://www.uscdcb.com/Genotype/cur_density.html). In January of 2009, researchers from 

AGIL-USDA released the first official genomic evaluation for Holstein and Jersey. Still in 2009, 

Angus Genetics Inc. started to run genomic evaluations, but with substantially fewer genotypes, 

which was also true for other livestock species. After the first validation exercises, the real gains 

in accuracy were far less than those promised in the paper of Meuwissen et al. (2001).  This 

brought some uncertainties about the usefulness of GS that were later calmed by understanding 

that more animals should be genotyped to reap the full benefits of GS. VanRaden et al. (2009) 

showed an increase in accuracy of 20 points when using 3,576 genotyped bulls, opposed to 6 

points when using 1,151 bulls. Now, in 2017, Holstein USA has almost 1.6 million (Figure 1) 

and the American Angus Association has more than 300,000 (Figure 2) genotyped animals.  

When GS was first implemented for dairy breeding purposes, all the excitement was around one 

specific Holstein bull nicknamed Freddie (Badger-Bluff Fanny Freddie), which had no daughters 

with milking records in 2009 but was found to be the best young genotyped bull in the world 

(VanRaden, personal communication).  In 2012 when his daughters started producing milk, his 

superiority was finally confirmed. Freddie’s story is an example of what can be achieved with 

GS, as an animal with high genetic merit was identified earlier in life with greater accuracy. With 

the release of genomic predicted transmitting abilities or genomic enhanced expected progeny 

differences (GE-EPD), the race to genotype more animals started. 

https://www.uscdcb.com/Genotype/cur_density.html
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Figure 1. Number of genotyped US Holsteins over the years 

(https://www.uscdcb.com/Genotype/cur_density.html) 

 

 

Figure 2. Number of genotyped Angus over the years (AGI Inc., 2017) 

The availability of more genotyped cattle drove the development of new methods to incorporate 

genomic information into national cattle evaluations. The first method was called multistep 
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(Figure 3), and as the name implied, this method required multiple analyses to have the final GE-

EPDs. Distinct training and validation populations were needed to develop molecular breeding 

values (MBV), which were blended with traditional EPDs or included as correlated traits 

(Kachman et al., 2013). This multistep model was the first one to be implemented for genomic 

selection in the USA. Several studies examining the application of multistep in beef cattle 

evaluation have been published (Saatchi et al., 2011; Snelling et al., 2011). The main advantage 

of this approach is that the traditional BLUP evaluation is kept unchanged and genomic selection 

can be carried out by using additional analyses. However, this method has some disadvantages: 

a) MBV are only generated for simple models (i.e., single trait, non-maternal models), which is 

not the reality of genetic evaluations; b) it requires pseudo-phenotypes (EPDs adjusted for parent 

average and accuracy); c) pseudo-phenotypes rely on accuracy obtained via approximated 

algorithms, which may generate low quality output; d) only genotyped animals are included in 

the model; e) MBV may contain part of parent average, which leads to double counting of 

information. 

 

 

Figure 3. Multistep genomic evaluation                       Figure 4. Single-step GBLUP 

 

As only a fraction of livestock are genotyped, Misztal et al. (2009) proposed a method that 

combines phenotypes, pedigree, and genotypes in a single evaluation (Figure 4). This method is 

called single-step genomic BLUP (ssGBLUP) and involves altering the relationships between 
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animals based on the similarity of their genotypes. As an example, full-sibs have an average of  

50% of their DNA in common, but in practice this may range from 20% to 70% (Lourenco et al., 

2015a).  ssGBLUP has some advantages over multistep methods.  It can be used with multi-trait 

and maternal effect models, it avoids double counting of phenotypic and pedigree information, it 

ensures proper weighting of all sources of information, and it can be used with both small and 

large populations and with any amount of genotyped animals.  Overall, greater accuracies can be 

expected when using ssGBLUP compared to multistep methods.  Not long after the 

implementation of GS, single-step was first applied to a dairy population with more than 6,000 

genotyped animals (Aguilar et al., 2010; Christensen and Lund, 2010).  

An early application of ssGBLUP in beef cattle used simulated data with 1500 genotyped 

animals in an evaluation for weaning weight with direct and maternal effects (Lourenco et al., 

2013). Although a small number of genotyped animals was used, gains in accuracy were 

observed for both direct and maternal weaning weight.  Next ssGBLUP was applied to a real 

breed association data set (Lourenco et al., 2015b). This study showed a comprehensive genomic 

evaluation for nearly 52,000 genotyped Angus cattle, with a considerable gain in accuracy in 

predicting future performance for young genotyped animals. This gain was on average 4.5 points 

greater than the traditional evaluations; however, it was much lower than the 10-fold gain 

obtained by Meuwissen et al. (2001). Going back to their study, we observed that the number of 

genotyped animals was small (~2,000) and some of the QTL effects generated in their simulation 

model were very large, meaning few QTL were explaining nearly all the genetic variation.  This 

is unrealistic for most of the traits of interest in livestock breeding, which we know are 

controlled by several, small effect QTL, as it is shown in Figure 5. The percentage of genetic 

variance explained by each one of the 54,000 SNP is in the Y-axis. Although we can see several 

peaks in this Manhattan plot, meaning there are lots of SNP associated with weaning weight, the 

variance one SNP explains alone is at maximum 0.7%.   

More interesting than finding peaks of SNP in Manhattan plots, is that those peaks are seldom 

observed in the next generations. In addition, many peaks seem to capture population structure or 

effect of important ancestors instead of proper QTL effect.  Fragomeni et al. (2014) investigated 

the top SNP windows explaining the genetic variance of 3 traits in broilers. Surprisingly, the 

peaks were not consistent across generations, meaning selection should not be performed based 
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on SNP regions, unless a large effect QTL is conclusively identified.  Therefore again for 

polygenic traits that are influenced by many SNPs, where each SNP has a small effect, it is more 

practical to simply include a large number of SNPs in a genetic evaluation method, such as 

ssGBLUP, than trying to estimate SNPs directly and providing them separately.     

 

Figure 5. Manhattan plot for weaning weight in American Angus, using nearly 52,000 genotyped 

animals. Y-axis shows percentage of genetic variance explained by the SNP; X-axis has SNP 

number. Each chromosome is represent by different colors. 

 

The American Angus Association has been using genomic information since 2009 in a multistep 

process that treats MBVs predicted from a separate data set as a correlated trait with the 

phenotypic data in the Angus data base.  Now the beef industry has started moving to single-step. 

Organizations are now running or testing single-step using all types of models: single and 

multiple-trait, maternal effects, multi-breed using external EPDs, linear and categorical traits. 

The American Angus Association’s official release of GE-EPD using ssGBLUP (using software 

developed at UGA; http://nce.ads.uga.edu/software) is scheduled for July 7, 2017. In the 

beginning of 2017, International Genetic Solutions (IGS) released the first GE-EPD from single-

step in a single-trait, multi-breed evaluation for stayability using BOLT, a software developed by 

Theta Solutions (Bruce Golden and Dorian Garrick), and about 100,000 genotyped animals 

(http://simmental.org/site/index.php/component/k2/item/209-multi-breed-stayability-first-epds-

http://simmental.org/site/index.php/component/k2/item/209-multi-breed-stayability-first-epds-using-bolt
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using-bolt). The implementation of single-step for the IGS evaluation uses the approach 

developed by Rohan Fernando’s group (see Fernando et al., 2014), although BOLT has also 

implemented the approach developed by Ignacy Misztal’s group (see Aguilar et al., 2010). In 

terms of accuracy, GE-EPDs outperformed traditional EPDs in single-step or multistep 

approaches. Also, the two implementations of single-step (Misztal’s approach or Fernando’s 

approach) produce similar accuracies (Fernando et al., 2014). The higher accuracy delivered by 

single-step, the simplicity of the method, and the ability to work with virtually any number of 

genotyped animals is the responsible for the move towards single-step.   

We can see the statement made in 2009 that “more animals should be genotyped if the objective 

is to get the full benefits of GS” is still currently in practice. Computationally speaking, prior to 

2014 ssGBLUP could not be implemented for a data set with more than 150,000 genotyped 

animals because the genomic relationship matrix had to be created via inversion. Misztal et al. 

(2014) extended the algorithm to construct the inverse of the pedigree relationship matrix, 

proposed by Quaas (1988), to work for the construction of the inverse of the genomic 

relationship matrix.  This method of constructing the inverse of the genomic relationship matrix 

is termed the “algorithm for proven and young” (APY) and enables implementation of ssGBLUP 

for millions of genotyped animals. Single-step with APY has been successfully implemented for 

570,000 genotyped Holsteins in a practical analysis time (Masuda et al., 2016). 

The idea of this method came from the fact that although millions of animals can be genotyped, 

the dimension of the genomic information is limited.  In a statistical language, some genotyped 

animals are linearly independent (core) and some are linearly dependent (noncore) and the 

inverse is constructed directly only among the independent animals and the number of 

independent animals is relatively fixed no matter how many animals are genotyped.  The genome 

of a particular animal contains large segments inherited from recent and earlier ancestors.  In 

Angus, about 12,000 segments explain 100% of the genetic additive variance, with 3,000 largest 

segments explaining 90% of the variance (Pocrnic et al., 2016).  When estimating SNP effects, 

we indirectly estimate effects of the segments, with many SNPs corresponding to one segment. 

This is why with two analyses using the same data but different methods for SNP estimation, 

SNP effects can be weakly correlated whereas EPDs are highly correlated. While 12,000 

http://simmental.org/site/index.php/component/k2/item/209-multi-breed-stayability-first-epds-using-bolt
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segments are hard to identify, 12,000 animals are likely to contain nearly all combinations of 

those segments.  

Several studies have shown that including genomic information increases the accuracy of 

prediction particularly among young animals (Aguilar et al., 2010; Christensen and Lund, 2010; 

Lourenco et al., 2014; Lourenco et al., 2015b).  This increase in accuracy at younger ages can 

also lead to greater numbers of young bulls selected, which reduces generation interval.  So 

using genomic information helps to increase accuracy and to reduce generation interval, which 

were two early state benefits of including genotypic information in genetic evaluation programs.  

Another benefit of using genotypic information that was initially offered by some was once we 

know genotypes there would not be a need to collect phenotypes.   If we are looking at the 

differences in DNA sequence that can contribute to phenotypic differences, the only way to do 

that is to have both SNP and phenotypes. Without SNP we cannot unravel the molecular basis of 

phenotypic diversity, and without phenotypes we cannot link the polymorphisms to this 

phenotypic diversity. If we go back to Figures 3 and 4, we can see that both single-step and 

multistep methods currently used for genomic selection need phenotypes. Consider the multistep 

approach. The training population needed genotypes and phenotypes to develop prediction 

equations, meaning both pieces of information are essential to GS. Several studies showed a 

decrease in accuracy of genomic predictions if phenotypes are not recorded for several 

generations (Muir, 2007; Wolc et al., 2011).  So, it is important that phenotypes continue to be 

collected in every generation. 

Among all the research that has been done in beef cattle genomics, there is one topic that remains 

unclear: multibreed evaluation. Different breeds are selected for different purposes and with 

different intensity; therefore, the allele frequencies and linkage disequilibrium are different. This 

makes the prediction of GE-EPD for a breed that is not included in the reference set (used to 

estimate SNP effects) challenging. Some authors reported low accuracy of predicting across beef 

cattle breeds using multistep methods (Kachman et al., 2013), and some reported reasonable 

accuracies when the breeds are only few generations apart (De Roos et al., 2009). In a study that 

involved predictions in Holsteins and Jerseys, better predictions for Jerseys after including the 

Holstein data (Harris and Johnson, 2010) could be due to the fact that important Jersey bulls are 

descendants of Holstein bulls. Since the number of segments per breed is small, the chip with 
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50,000 SNP has enough capacity to account for a few breeds at slightly low accuracy. A 

comprehensive approach for crossbred or multibreed genomic evaluation in beef, analogous to 

the traditional approach proposed by Legarra et al. (2007), is the use of metafounders (Legarra et 

al., 2015). Meuwissen et al. (2016) stated that having a greater number of SNP, which means 

reading about 30 million SNP in the cattle DNA, would help to better predict across breeds. This 

leads to another promise for the beef cattle industry: sequence data could help to increase 

accuracy and find causative variants in the genome. The 1,000 bull genomes consortium was 

created in 2012 with the objective to sequence 1,000 animals and more easily identify QTL for 

complex traits (Daetwyler et al., 2014). The project is still ongoing and the number of sequenced 

beef and dairy cattle is around 2.000. The use of sequence data is a big promise, although very 

small increase in accuracy was reported when moving from 50K to 777K SNP for genomic 

selection (VanRaden et al., 2011) or even when moving to 30 million SNP (actually ~ 3 million 

qualified SNP) (MacLeod et al., 2016). In a recent study, VanRaden et al. (2017) selected about 

17,000 SNP that had higher effect on 34 dairy traits and included them in the 50K SNP data. The 

maximum increase in accuracy was 2.2 points for body depth, and the average gain for the 34 

traits was 1.6 points. Maybe sequence data can help us to find true causative variants; however, 

the best use of these data is still unclear. Consequently, the race for finding the best use for this 

information has just started. 

For the beef cattle industry, as well as the other livestock industries, some of the initial stated 

benefits associated with the use of genomic information have been delivered, while others have 

not been realized.  Technology continues to develop and mature with new ideas coming from a 

variety of fields. It is important to keep investing in all areas of research related to genomics and 

to be ready for the new developments yet to come.   
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