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Introduction

In most standard linear models, model specifi cation 
includes the simplifying assumption that covariates are 
known without error (Kutner et al 2005). For some simple 
categorical variables, like gender or herd of origin, this is 
perhaps true, excluding errors in data entry (Meyer 1997). 
Measurements that seek to capture more complex and 
dynamic sources of information, however, can seldom 
be represented without error. In this case, a thorough 
understanding of the nature of the error associated with 
a measurement system is necessary to fully evaluate the 
appropriateness of such simplifying assumptions, and where 
necessary, make accommodations and adjustments in the 
development of a robust model. At the outset of a chapter 
focused entirely on metric validation and characterization 
of error, it therefore seems prudent to briefl y refl ect more 
abstractly on the process of measurement of complex 
features. 

When approaching the task of extracting anatomical 
information from a digital image, it is essential that one 
not conceptualize a cow simply as a solid object of fi nite 
dimensions existing in three-dimensional space. Instead, 
conceive of an image of a cow as existing in a high 
dimensional space, sometimes colloquially referred to in 
the natural sciences as a hyperspace, built from a composite 
of information of numerous types (Hurlbert 1981; Ojiem 
et al 2006; Van Heel 1984). Part of the high dimensional 
space in which such an image lives will capture information 
about the physical attributes of an animal, but many 
other dimensions will capture extraneous information 
classifi ed in this application as noise - age, coat length, 
coat color, cleanliness, emotional state, position, light 
exposure, shadow exposure, background, etc. In developing 
a novel measurement system, the goal is to extract the 
maximum amount of information of a desired type, the 
signal, from information deemed extraneous, the noise 
(Measurement Systems Analysis Work Group 2010). This is 
e� ectively done through a series of data compressions steps. 
Careful consideration must be given to the assumptions 
made at each stage of dimensionality reduction to 
account for potential sources of error introduced by the 
compression technique selected (Kirby 2001). Finally, 
full characterization of a measurement system requires a 
thorough characterization of the resulting metrics to ensure 
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they demonstrate traits amendable to standard methods of 
statistical inference and predictive modeling (Kutner et al 
2005).  

Dimension Reduction 

The fi rst major compression of information utilized by 
this measurement system occurred in reducing the temporal 
dimension down to a single time point. It was assumed that 
boney structural features of a mature cow’s head would not 
change signifi cantly over a time window spanning only two 
weeks, excluding any obvious physical injuries. It should be 
stated that this is fully an assumption, as it does not appear 
that this issue has been addressed in the existing body of 
published research, and validation through an extended 
longitudinal study of the boney structures of the bovine face 
has been left to future research. In the process of obtaining 
facial photos, it was observed that this assumption may have 
been violated for select boney and cartilaginous structures 
obscured by a signifi cant amount of soft tissue, as variations 
in facial expressions might obscure measurement of facial 
structure on a much fi ner time scale. This observation was 
explored indirectly as part of the larger metric validation 
procedure. 

The second and perhaps most signifi cant compression 
of information utilized by this measurement system 
was exclusion of pixel exposure information so that 
facial structures were represented only by the distances 
between landmark structural points. An image is typically 
represented by an m×n×3 matrix, where each pixel index 
contains, depending on the format, a real number value 
refl ecting the exposure level or hue intensity at that position 
in the captured scene. Even for a camera with moderate 
pixel resolution, this represents a massive amount of 
information contained in many thousand pixel values. 
Photos are often compressed to a grayscale m×n×3 matrix 
for image analysis purposes, but even for modestly large 
image databases, standard pixel-based analysis techniques, 
like eigenface analysis, can quickly become computationally 
intractable (Kirby 2010). This would impose computational 
constraints that could limit the applicability of such a 
system, particularly if it were to be implemented at a breed-
level.
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Figure 1: Basic Anatomy of a Digital Image (Singh 2012)

Perhaps of greater concern, however, is the susceptibility 
of pixel-based image analysis techniques to extraneous 
noise. At its core, eigen face analysis is just a form of 
principal components analysis, where in this case each 
pixel index represents a variable. Given a large number of 
images captured under very controlled conditions, eigen 
face analysis can be an e� ective means of dimension 
reduction, eliminating noise and redundancy in a set 
of training images to yield a much smaller set of basis 
images that concentrate the information of the signal. Like 
standard principal components analysis, however, eigen 
face algorithms are greedy algorithms, creating at each 
step a basis image which captures the maximum amount 
of variation found in the original training set possible. 
Subsequently, eigen face algorithms o� er very little control 
with regards to how information is partitioned within basis 
images (Kirby 2001). This makes them a poor choice for 
isolating a specifi c class of features, such as facial anatomy, 
when conditions do not allow for tight control of other 
factors infl uencing image quality. Fluctuations in image 
exposure alone, with all other factors held constant, typically 
account for at least 10 dimensions in the resulting image 
space (Beveridge et al 2009). They also cannot discern 
between changes in the intended subject of the image 
(foreground) and random artifacts in the background, which 
can be di�  cult to control in a fi eld setting. Additionally, 
in animals, eigen face algorithms seem more infl uenced 
by changes in coat pattern than overall facial morphology, 
a major concern for application to Holstein populations 
(Caiafa et al 2005). Neural network-based image analysis 
techniques, which can be thought of as a non-linear 
extension of principal components based eigen-techniques, 
are a newer approach, and subsequently not as well defi ned 
(Kirby 2001). However, deep learning algorithms, likely by 
virtue of their multiple di� erentiable layers, seem more 
adept at paring complex components of images down into 
their simpler components, making them perhaps a better 
algorithmic candidate for extraction of facial phenotypes 
from farm quality images (RSPI Vision 2017). Unfortunately, 

robust networks require large and diverse image data sets to 
train, making them di�  cult to implement for applications 
without existing databases. 

 Given these constraints, it was determined that a face 
mesh approach was more appropriate for this domain of 
application. With this approach, key anatomical landmarks 
of the face are determined a priori. All images in a database 
are subsequently annotated with these landmark points, 
and their coordinate location within the pixel matrix of 
each image recorded and used in subsequent analyses. Large 
image databases have been used to train fully automated 
algorithms for landmark point extraction for applications 
in humans, but such work has not been pursued for animal 
populations, which again imposes practical constraints on 
the scale at which this technique can be imposed. Here 
again, however, deep learning algorithms have shown 
promise in this area, and new research indicates that 
learning algorithms for landmark point extraction trained 
on larger human databases may be e� ectively adapted to 
livestock features with much smaller reference data bases 
when strategic constraints are applied (Rashid 2017). For the 
purposes of this largely exploratory study, it was deemed 
su�  cient to simply extract landmark points manually. 
By using MatLab’s GINPUT tool to interactively select a 
predetermined series of key anatomical reference points 
on the face, and storing their coordinate locations within 
the pixel matrix, extraneous information related coat 
pattern and features of the farm environment, like variable 
lighting exposure and changing background content, were 
e� ectively excluded. It should be noted, however, that in 
applying this compression, a signifi cant amount of structural 
information was inevitably lost as well, with only structural 
points that had been identifi ed as descriptive a priori being 
retained for further analysis. This could serve as a source 
of bias, if certain regions of the face or types of structural 
variations were not adequately described by the landmark 
points defi ned. Additionally, physical selection of these 
anatomical points within the image was not without error, 
requiring targeted analysis to determine the magnitude and 
systematic nature of this source of measurement error. 

The third major compression of information came from 
reducing facial structures from 3 to 2 physical dimensions. 
It would be possible to represent structural features of 
the face via a 3-dimensional image, and thereby capture 
all dimensions of facial shape, up to the resolution of the 
camera and accuracy of the stitching algorithm (Aldridge 
et al 2011; Obafemi-Ajayi et al 2014). To do so, however, 
would be an expensive and time-consuming endeavor, 
requiring specialized equipment and greater restraint of 
the animal. Thus, this compression decision was driven 
predominantly by practical concerns, as it was deemed that 
loss of information was outweighed by gains in accessibility 
realized by developing this measurement system around 
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the specifi cations of any standard quality digital camera. 
In projecting a 3D object onto a 2D plane, however, 
several sources of error are introduced. The fi rst and most 
important is angle of the object relative the plane of the 
camera. Signifi cant variations in angle related to depth can 
e� ectively distort the resulting image as it is projected onto 
the plane, e� ectively warping the relative distances between 
facial structures. This is a major concern, as it not only 
distorts the perceptions of facial shape, but because of the 
underlying geometry, tends to do so in a systematic way. 
In other words, errors from this source are not necessarily 
random, and tend to be correlated, which breaks the 
assumptions of many statistical models (Kutner et al 2005). 
This source of error was addressed in two ways. The fi rst 
approach was procedural, attempting to reduce variation in 
camera angle as much as is possible on a farm working with 
large and at times disagreeable animals. Side profi le images 
were obtained parallel to the surface of the cheek. This was 
partially achieved by attempting to center the image on the 
eye, and then aligning as closely as possible the ridges of 
the eye orbitals on either side of the forehead. Front profi le 
images where obtained parallel to plane of the forehead. 
This was achieved by attempting to equalize the distance 
between either eye and the center of the forehead on either 
side of the face, and then seeking to obtain an image where 
the nose appeared as long as possible. 

Figure 2: Impact of Out-of-Plane Variations in Face Angle on 
Coordinate Locations

The second major source of error introduced by this 
compression came from variations in relative position of the 
camera to the cow. Varying distances between the camera 
and object changes the proportion of the frame dedicated 
to the cow’s face. This in turn changes the number of pixels 

dedicated to capturing structural features of the cow’s 
face (i.e. image resolution). If raw pixel distances between 
anatomical points were used, changes in image resolution 
would become a major source of error due to di� erences in 
scaling. This issue is often addressed by scaling the image 
to a known reference length of an object with the frame of 
the image, but this solution was deemed impractical on a 
working farm environment. Attempting to place a reference 
object in the frame near the cow so that it would be in a 
plane equidistant to the camera with the cow would not 
only signifi cantly increase the amount of time required 
to obtain an image, but also increase stress experienced 
by the animal and put the handlers in a more exposed 
position. Instead this issue was addressed by developing 
biometrics that either reported angles or distances as 
proportions. Computation of angles between traits are of 
course geometrically dependent only on their relative, not 
absolute, distances. Similarly, by using proportions to report 
relative distance measures, the scaling factor of the image 
was e� ectively “divided out”. Thus, this measurement system 
should be inherently robust to changes in image resolution 
that result from variable distances between camera and 
cow, as well as any variations in specs of the camera used 
or degree of zoom applied. Practically speaking, this greatly 
simplifi ed the process of acquiring images of the cows and 
allowed greater focused to be placed on reducing variations 
in image angle.

Figure 3: Illustration of Elimination of Scale Effect by Division Op 

One exception to this assumption of distance invariance 
was that, when the photograph was taken extremely close 
to the cow’s face, as frequently happened when photos 
were acquired in the feed bunk, there seemed to be a 
signifi cant interaction between position and angle. Put 
simply, when quite close to the cow, aligning the camera 
using the eye structural reference point created the correct 
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90-degree angle for the central part of the face, but still left 
a signifi cant angle between the camera and distal parts of 
the face, namely the nose. Auxiliary image measurements 
were used in an attempt to correct for this potential source 
of error in such images.

The fourth and fi nal source of compression comes 
from converting the 2D coordinate vectors representing 
the locations of key structural points into 1D descriptive 
measures that could be used as covariates in predictive 
models. Previous studies have frequently accomplished this 
by simply taking the Euclidean distance between all pairwise 
combinations of anatomical points, globally normalizing 
by the sum of all lengths to correct for di� erences in image 
resolution, and then reducing the number of candidate 
variables by using a multivariate compression technique 
such as principal components (Cole et al 2016; Aldrige et 
al 2001), or else using data clustering techniques designed 
for high dimensional input (Obafemi-Ajayi et al 2014). 
While this procedure is quite simple to apply, it has two 
key drawbacks. The fi rst and most signifi cant is that the 
resulting distance measures are directly geometrically 
related, resulting in complex correlations structures. A slight 
change in the relative position of one anatomical point 
would be refl ected in slight changes in all pairwise distances 
of which that point is a member. When points change their 
relative positions due to underlying face shape, associated 
Euclidean distance terms will change as well, but so many of 
these points would change simultaneously that it becomes 
di�  cult, if not impossible, to discern the nature of this 
geometric shift just from direct appraisal of the data. 

Algorithmic Solutions

Principal component analysis is a means to concentrate 
this redundant information, but in doing so assumptions 
of linearity are necessary. When a number of facial features 
shift simultaneously, their cumulative e� ects on individual 
pairwise distances may not necessarily be additive, which 
could potentially lead to infl ation of the parameter space 
or misleading reparameterizations (Kirby 2001; Johnson & 
Richard 2007). When the relative position of points changes 
due to error in point selection, as opposed actual changes 
in facial shape, this error is also subject to geometric 
constraints between pairwise combinations of points, 
potentially leading to correlation in the error structures. 
Most correlation-based multivariate techniques, including 
principal component analysis, require the assumption 
that error terms are uncorrelated. When this is not in fact 
true, correlation in error is mathematically interpreted as 
correlation in the signal. As a result, application of these 
dimension reduction techniques lead to concentration of 
both signal and error simultaneously (Johnson & Richard 
2007), which is at best ine�  cient but also a potential source 
of bias in downstream analysis.

Figure 4: When horizontal eye landmarks are constant, error in point 
selection leads to triangular relationship between edges

The second drawback of this technique is that principal 
component analysis, while an e� ective means of dimension 
reduction, is limited in terms of its descriptive ability. 
For exceedingly high dimensional input, it is di�  cult 
to determine from the orthogonal bases vectors what 
information is captured in each new transformed variable. 
In other words, it might be possible to determine from 
the relative scale of orthogonal basis values that a given 
dimension is dedicated largely to describing variations in 
eye structure, but it would be di�  cult if not impossible 
to determine what this would relate to in terms of the 
underlying structural variability without a means of 
e� ectively regenerating the face (Nielson et al 2011). This 
makes any subsequent models built using reparameterized 
variables di�  cult to interpret. While this is perhaps 
su�  cient for purely predictive models, it makes it di�  cult 
if not impossible to assess the biological appropriateness 
of such results. Further, as principal component analysis is 
not a model-based technique, it is not generally considered 
readily extrapolateable to novel data sets, which makes 
it more appropriate for descriptive studies as opposed to 
predictive modeling (Johnson & Richard 2007). 

In an e� ort to overcome these drawbacks, a geometric 
approach to biometric extraction was developed. This 
approach had two key goals. The fi rst was to minimize 
correlation between resulting biometrics, attempting to 
isolate specifi c changes in shape using targeted geometric 
relationships on the front end of the algorithm to create 
independence between measurements, as opposed to 
applying an indiscriminate orthogonalization technique 
like PCA on the back-end. This was done in two ways. The 
fi rst was that, as opposed to normalizing pixel distances 
between points using the sum of all pairwise distances, 
it divided by distances between nearby points that were 
selected to produce more intuitive interpretations of shape. 
For example, instead of describing the height of the eye as 
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a proportion of overall face size using the sum of distances, 
which would in turn be infl uenced by many other unrelated 
anatomical factors like jowl depth or nose length, it was 
compared directly to the length of the eye, or to the depth. 
The second means of achieving this goal was to make 
use of projection lengths over simple Euclidean distances. 
The coordinate locations of many key anatomical points 
were frequently observed to be infl uenced by multiple 
independent variations in facial shape. By projecting such a 
point onto a number of carefully selected reference slopes 
from nearby facial features, the e� ects of these independent 
shape variants could be more e� ectively broken up into 
distinct distance measures to isolate their independent 
e� ects. For example, the location of the highest point of 
the eye is infl uenced by two variants in eye shape: how 
tall the eye is, and how angular the top of the eye is (i.e. 
how far forward is the highest point). Simple Euclidean 
distances would capture both e� ects at the same time. By 
instead relying on projections, the angularity of the eye is 
captured by projecting the highest point of the eye onto the 
horizontal plane of the eye (Eye Height Point Proportion - 
EHPP), and the height of the eye is captured by projecting 
the highest point of the eye onto the plane perpendicular 
to the horizontal reference plane of the eye (Eye Height 
Proportion - EHP).

Figure 5: Example of Geometric Biometric using Orthogonal Projects

The second goal pursued with a geometric approach 
to biometric extractions was to reduce the impact of 
errors in point selection. This was done in several ways. 
First, by attempting to defi ne facial shapes using targeted 
comparisons of length measures, as opposed to Euclidean 
distances between all pairwise combinations of anatomical 
reference points, and by relying on a local as opposed to 
global normalization scheme, any error incurred in the 
selection of the coordinate location of a given anatomical 
reference point was e� ectively isolated to only a targeted 

handful of metrics, and not amplifi ed across the broader 
set of metrics. Put more simply, if the coordinate location 
of the highest point of the eye was selected poorly in a 
given picture, that error was only seen in a subset of the 
eye biometrics and had no impact on biometrics extracted 
from the nose, topline, or forehead. This characteristic 
was enhanced by relying predominantly on projection 
lengths. Just as the projections were used to break down 
distances into the distinct infl uences of shape, they also 
e� ectively orthogonalized the components of error. This was 
particularly helpful for traits where coordinate selection was 
perhaps clear in one direction but less easy to distinguish 
for another. For example, take highest point of the eye. For 
very rounded eyes, multiple coordinate selections might 
return points with very similar vertical distances horizontal 
plane of the eye, but a great deal of variability in the 
horizontal distance. This error in point selection would in 
turn be isolated only to metrics that relied on the horizontal 
component of this point location and have virtually no 
infl uence on metrics that rely only on the vertical distance, 
whereas for simple Euclidean distance this error would 
infl uence any pairwise combination that involved this point.

Figure 6: Orthogonalization of Error Component

Finally, measurement error due to error in point selection 
was also reduced with the strategic use of interpolated 
points, defi ned as the intersection point of two extrapolated 
lines formed by anatomical points from other regions of 
the face. E�  ciently calculated using a solution to standard 
cross-product formula, such points were frequently used 
to infer the location of an anatomical structure that could 
not be reliably identifi ed by eye. This frequently happened 
for traits obscured by a signifi cant amount of fl esh or 
muscle. The location of the back of the jaw is an example 
of an interpolated point. Often di�  cult to identify visually 
for cows with signifi cant amounts of skin and fat deposits 
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around the jowl, this point was interpolated by projecting 
a line from the bottom of the chin along the jaw bone and 
then fi nding its perpendicular intersect with the back of the 
poll.

Figure 7: Example of an Interpolated Landmark Point (red)

A total of 104 candidate geometric biometrics was 
developed to fully describe the shape of the bovine face. 
To assess the e�  cacy of this novel approach to biometric 
extraction from digital images, geometric biometrics will 
be compared to standard normalized length measures 
within each region of the face to determine which strategy 
demonstrates more robustness to measurement error 
while minimizing correlations between metrics without 
use of dimension reduction techniques. Final estimates of 
repeatability will then be used to select which candidate 
biometrics demonstrate su�  cient robustness to warrant 
farther study in predictive models of dairy productivity and 
longevity.
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