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A Data Rich Future
• Developing Technologies

– wearable sensors 
• movement/behavior
• biologics

– RFID/GPS 
– genomoics/microbiome
– automated management

• Where will these technologies 
lead us?

• Where will the technological 
gaps lead us astray? d xc .te c h n o lo g y

Future of Anatomical Phenotypes?

• Scale
• Frequency

• Accuracy
https://www.dpi.nsw.gov.au/animals-and-livestock/beef-
cattle/breeding/bull-selection/structural-soundness

http://dairyhoofhealth.info/lesions/digital-dermatitis/dd-
heifers-alters-claw-conformation-increases-heel-horn-erosion/

Guiding Questions

• What existing algorithms best fit this 
application?

• What modifications need to be make these 
algorithms better adapted to the demands of a 
production environment?

• Will the measurements produced from images 
have suitable characteristics to be incorporated 
in standard statistical analyses?
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Image Hyperspace 1) Temporal Compression

• Growth?
• Microexpressions?

2) Projection Onto a Plane 3) Projection Onto a Plane
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3) Pixel to Coordinate Annotations

Singh, Bhupendra Pratap. "Imaging Applications of Charge Coupled Devices (CCDs) for Cherenkov 
Telescope" 2012. Project Report Bhabha Atomic Research Centre. Online. 

What’s already out there?

• Eigen face algorithms

http://laid.delanover.com/explanation-face-recognition-using-eigenfaces/

What’s already out there?

• Eigen face algorithms
• Neural Networks

https://www.rsipvision.com/exploring-deep-learning/

What’s already out there?

• Eigen face algorithms
• Neural Networks

• Face Mesh

https://steemit.com/science/@stormblaze/how-does-a-computer-detect-a-face
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What’s already out there?

• Eigen face algorithms
• Neural Networks

• Face Mesh

https://steemit.com/science/@stormblaze/how-does-a-computer-detect-a-face
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Abstract

We present a method for localizing facial keypoints on

animals by transferring knowledge gained from human

faces. Instead of directly finetuning a network trained to

detect keypoints on human faces to animal faces (which is

sub-optimal since human and animal faces can look quite

different), we propose to first adapt the animal images to

the pre-trained human detection network by correcting for

the differences in animal and human face shape. We first

find the nearest human neighbors for each animal image us-

ing an unsupervised shape matching method. We use these

matches to train a thin plate spline warping network to warp

each animal face to look more human-like. The warping

network is then jointly finetuned with a pre-trained human

facial keypoint detection network using an animal dataset.

We demonstrate state-of-the-art results on both horse and

sheep facial keypoint detection, and significant improve-

ment over simple finetuning, especially when training data

is scarce. Additionally, we present a new dataset with 3717

images with horse face and facial keypoint annotations.

1. Introduction

Facial keypoint detection is a necessary precondition for
face alignment and registration, and impacts facial expres-
sion analysis, facial tracking, as well as graphics methods
that manipulate or transform faces. While human facial key-
point detection is a mature area of research, despite its im-
portance, animal facial keypoint detection is a relatively un-
explored area. For example, veterinary research has shown
that horses [16, 11], mice [25], sheep [3], and cats [17] dis-
play facial expressions of pain – a facial keypoint detector
could be used to help automate such animal pain detection.
In this paper, we tackle the problem of facial keypoint de-
tection for animals, with a focus on horses and sheep.

Convolutional neural networks (CNNs) have demon-
strated impressive performance for human facial keypoint
detection [33, 47, 41, 54, 20, 61, 6, 56], which makes CNNs

⇤Work done while an intern at UC Davis.

Human&Keypoint&
Detection&
Network

Human&Keypoint&
Detection&
Network

Warping&Network

(a)

(b)

Figure 1. Main idea. (a) Directly finetuning a human keypoint de-
tector to horses can be suboptimal, since horses and humans have
very different shapes and appearances. (b) By warping a horse
to have a more human-like shape, the pre-trained human keypoint
detector can more easily adapt to the horse’s appearance.

an attractive choice for learning facial keypoints on animals.
Unfortunately, training a CNN from scratch typically re-
quires large amounts of labeled data, which can be time-
consuming and expensive to collect. Furthermore, while a
CNN can be finetuned when there is not enough training
data for the target task, a pre-trained network’s extent of
learning is limited both by the amount of data available for
fine-tuning, as well as the relatedness of the two tasks. For
example, previous work demonstrate that a network trained
on man-made objects has limited ability to adapt to natural
objects [52], and additional pretraining data is only benefi-
cial when related to the target task [18].

While there are large datasets with human facial key-
point annotations (e.g., AFLW has ⇠26000 images [23]),
there are, unfortunately, no large datasets of animal facial
keypoints that could be used to train a CNN from scratch
(e.g., the sheep dataset from [51] has only ⇠600 images).
At the same time, the structural differences between a hu-
man face and an animal face means that directly fine-tuning
a human keypoint detector to animals can lead to a sub-
optimal solution (as we demonstrate in Sec. 4).

In this paper, we address the problem of transferring
knowledge between two different types of data (human and
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Rashid et al 2017

Guiding Questions

• What existing algorithms best fit this 
application?

• What modifications need to be make these 
algorithms better adapted to the demands of a 
production environment?

• Will the measurements produced from images 
have suitable characteristics to be incorporated 
in standard statistical analyses?

4) 2D Coordinate to Descriptive Covariate

• Euclidean/Geodisic Distances
– Pairwise Distances => Data Compression => Statistical 

Analysis

–PCA/Factor Analysis
–Unsupervised Learning (Clustering/ISOMAP)

Miles et al 2014

Image Recognition => Image Description

• Geometric Biometric Analysis
–Projections against anatomical reference planes
–Anatomical and auxiliary points 
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Methods
• Image Data Base

– 108 Holstein Cows Photographed Over 3 Days
– 551 Unique Images
– 2 Reps of Coordinate Selection

• Compute Geometric Biometrics and Locally Normalized Length 
Measures for four regions of the face
– Eye
– Muzzle
– Topline
– Forehead/Jowl

• Normality (Skew & Kurtosis)
• Robustness to Variations in Image Quality 
• Overall Repeatability
• Correlation Structures in Observed Values and Error
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1) Normality
• Hypothesis: Will geometric biometrics prove show superior 

distribution traits for linear models

2) Resistance to Variation in Resolution
• Hypothesis: Will geometric biometrics prove more resistant to 

variations in image resolution/quality
• Sources of Variation:

– Camera Quality
– Distance from animal
– Zooming/Cropping
– Image Compression

Image Resolution
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Image Resolution
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Resistance to Variation in Resolution
• Frame-to-Face Ratio = Pixel area occupied by 

cows head relative to overall size of the frame
– C am era  qua lity  and  zo o m  held  co nstant
– O nly d istance  betw een  cam era  and  cow  varied  
– Proxy m easu re  fo r im age reso lu tio n

!!"= $%&'(&')
!%'*&(&+,ℎ.×!%'*&0&+,ℎ.

Resistance to Variation in Resolution: Eye Biometrics 

∆"#$%&'(#) = ∆++,+∆.+/+(∆++,)2+(∆.+/ )2+∆++,×∆.+/

& = 0.04& = 0.18
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Resistance to Variation in Resolution: Muzzle

∆"#$%&'(#) = ∆++,+∆.+/+(∆++,)2+(∆.+/ )2+∆++,×∆.+/

& = 0.03 & = 0.02

Resistance to Variation in Resolution: Topline

∆"#$%&'(#) = ∆++,+∆.+/+(∆++,)2+(∆.+/ )2+∆++,×∆.+/

& = 0.01 & = 0.01

Resistance to Variation in Resolution: Forehead

∆"#$%&'(#) = ∆++,+∆.+/+(∆++,)2+(∆.+/ )2+∆++,×∆.+/

& = 0.04 & = 0.04

3) Reduction in Noise

• Sources of Error
–Within-Photos 

Variation
• Point Selection

–Between-Day 
Variation
• Face Angle

• Facial Expression

Rep	=	 & ' ( )' * )+ , - . */ . . , 0 + /

1 + *' 2 & ' ( )' * )+ , ), 3 . *( )4
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Reduction in Noise: Eye

R =0.32 R =0.36

R =0.45R =0.43

*+,-./0+1234 =5+0728 +049:; +0:<= +.=*+,-./0+1>?@; +.00,0:<= +.00,07A97B

Reduction in Noise: Muzzle

R =0.36 R =0.34

R =0.41 R =0.39

*+,-./0+1234 =5+0728 +049:; +0:<= +.=*+,-./0+1>?@; +.00,0:<= +.00,07A97B

Reduction in Noise: Topline

R =0.30 R =0.43

R =0.40 R =0.52

)*+,-./*0123 =4+/617 +/389: +/9;< +-=)*+,-./*0=>?: +-//+/9;< +-//+/6@86A

Reduction in Noise: Forehead

R =0.40 R =0.49

R =0.46 R =0.54

)*+,-./*0123 =4+/617 +/389: +/9;< +-=)*+,-./*0=>?: +-//+/9;< +-//+/6@86A



Catie McVey, Colorado State University June 21, 2018

Emerging Technologies, BIF 2018, Loveland, Colo. 10

4) Resistance to Correlated Errors
• Hypothesis: Will geometric biometrics prove more resistant to 

error in selection of anatomical coordinates compared to 
pairwise distances

• Absolute Distance:

• Hypothesis: Will geometric biometrics prove more resistant to 
error in selection of anatomical coordinates compared to 
pairwise distances

• Absolute Distance:

A

B

C

D

Eye Height Proportion:

EHP	=	&'()

Eye Length Proportion:

EHP	=	('()

C
+ e

+ 0

4) Resistance to Correlated Errors

r = 0.11r = 0.17

Resistance to Correlated Errors: Eye

r = 0.07r = 0.13

Resistance to Correlated Errors: Muzzle
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r = 0.08r = 0.04

Resistance to Correlated Errors: Topline

r = 0.06r = 0.13

Resistance to Correlated Errors: Forehead

Conclusions

• Geometric biometrics are more resistance to 
variations in image quality, particularly the 
smaller traits

• Geometric biometrics have less correlated error 
than pairwise distance measures

• Geometric biometrics are more repeatable than 
pairwise distance measures for boney traits

• Geometric biometrics are way more interpretable

So why faces?
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Deep JowlDouble Chin

Large Deep Eye

Moose Nose

“Jibbah”

Multi-National Champion Stallion Baske Thyme SA

The Fox Farm Experiment

Genes Control 
Hormones

Hormones 
Control Behavior

Hormones Alter 
Facial 

Development

Inference

Data Mining Dairy Performance Traits

• Preliminary Data Set
– A ccelerated  G en etics B u ll 

C ata lo gue
– 66 H o lste in

– 16 Pre lim inary M easures (Z1 -Z16)

• Forward Selection Modeling
– So ft beta  test (~0 .05) cuto ff
– M o no to n ica lly  increasing  

ad ju sted  r2

– N ested  M o d el A N O VA  Tests
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Magnitude of Correlation
Baseline Model Biometric Model

p-value1R2 Ra2 R2 Ra2

PTAM 0.256 0.218 0.621 0.547 7.20e-06
PL 0.417 0.386 0.742 0.673 6.80e-06
CCR 0.042 0.009 0.608 0.511 9.56e-07
DCE 0.154 0.125 0.515 0.441 3.18e-05
Lameness 0.065 0.029 0.422 0.321 0.00077
Ketosis 0.079 0.025 0.511 0.413 4.59e-05
Mastitis 0.281 0.239 0.441 0.371 0.00669
Metritis 0.058 0.003 0.531 0.425 3.54e-05
Retained Placenta 0.013 -0.045 0.452 0.328 0.00029
Displaced Abomasum 0.022 -0.035 0.386 0.295 0.00017

Comparing Models

PTAM PL CCR Lameness Ketosis Metritis Retained P
(-)Z16 (+) Z7 (-)Z16 (-)Z5*FLC (-)Z9 (-)PTAM*Z7 (-)Z7*PTA
(-)Z15 Z1*Z12*Z13 (+)Z16*PTAM (-)Z11*Z9 (+)Z13 (+)Z7 (-)Z12*Z14
(+)Z7*PTA (+)Z9 (+)Z12 FLC*Z11*Z9 (+)Z10*PTA (-)Z9 (+)Z14
(-)Z12*Z13 (+)Z1*Z4 (-)Z3 Z1*Z2*Z3 (+)Z12*PTAM (-)Z9
(+)Z8 (-)Z1*Z11 (-)Z9*Z10 (+)Z1

(+)Z5*PTAT (+)Z1*Z9
(+)Z15*Z3

(-)Z6

Cross-Validating w/ Milking 
Temperament
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Facial Biometrics As Indicator Traits in 
Genetic Evaluations

• Data

– 681 First Calf Calving Ease (CE) Records
– 622 Facial Biometric Records – 4 Eye Biometrics
– 1552 Animals in 3-Generation Pedigree

• Results
– H2 CE = 0.13 ± 0.10
– H2 Eye Height  = 0.28 ± 0.12

– Genetic Correlation = 0.27

Future Work
• Factor analysis to adjust for variations in facial 

expression for soft tissue traits
• Geometric corrections for variations in out-of-

plane angle
– C ano nica l C o rre latio n  (C C A )
– A n gle  B etw een  Su bsp aces
– N eu ra l N et

• Confirm Regression Models to Genomic Health 
EBV’s

• Social Network Analysis/Nonlinear Rank Order 
Modeling

Thanks!

• CSU Dairy Systems Crew – Pinedo Lab
• Our generous farm partners

• NSF GRF funding

Questions


