

Developments in single-step for beef cattle genomic evaluation in the US

Daniela Lourenco

S. Tsuruta , I. Pocrnic, A. Legarra, B.O. Fragomeni, Y. Masuda, I. Aguilar, S. Miller, D. Moser, I. Misztal

BIF - 06/22/2018

Developments in single-step

- Validation
 - Categorical traits and maternal effect
- Large-scale genomic evaluation
- Indirect prediction with APY
- Recent projects by UGA group

Ability to predict future performance 2014 2017 Note: 8M animals in pedigree Marrian and WW Marrian and WW

Validation for Calving Ease

Predictive ability = COR(Y_adj, GEBV)

Feb/2017

- 9M animals in pedigree
- 8M BW
- 1.5M CE
- 303k genotyped animals
- 6.6k born in 2016

Predictive ability = COR(Y_adj, GEBV)

7

Calving Ease is categorical (binary)!

- Phenotypes are 1 and 2
- Adjusted phenotypes?
- EBV and GEBV are in "continuous scale"
- Lourenco et al. (2015)
- EBV = 0.12 vs. GEBV = 0.13

Predictive ability = COR(Y_adj, GEBV)

Maternal effect goes back!

- Phenotypes recorded in the progeny
- · Genetic + environment of dam
- Cor (Yi_adj, EBVi_mat)?
- Cor (Yi_adj, EBV_mat_dam)?

• Cor (Yi adj, EBV total maternal)?

More robust way to validate in this situation

Validation

- LR Method
 - Linear Regression metrics
 - Legarra & Reverter (2017; 2018)

Technical Note: Detection of Bias in Genetic Predictions^{1,2}

A. Reverter, B. L. Golden, R. M. Bourdon, and J. S. Brinks Department of Animal Sciences, Colorado State University, Fort Collins 8055

- · Consistency between subsequent evaluations
- · Partial and Whole evaluations
- Validation animals have no phenotypes in Partial data but do have phenotypes in Whole data
- Metrics

10

LR Validation

- Relative increase in accuracy EBV = $\rho_{EBV,v,EBV,w}$ = COR(EBV_v, EBV_w)
- Relative increase in accuracy GEBV = $\rho_{GEBVp,GEBVw}$ = COR($GEBV_p$, $GEBV_w$)
- Gain in Accuracy = $\rho_{GEBVp,GEBVw}/\rho_{EBVp,EBVw}$
- Inflation of EBV = $EBV_w = b_0 + b_1 EBV_n$
- Inflation of GEBV = $GEBV_w = b_0 + b_1 GEBV_p$

LR Validation

- Compares EBV with EBV and GEBV with GEBV
 - Similar scale
- Seems to work for complex models and traits
 - Binary, low heritability, maternal models
- Still needs extensive tests (Macedo et al., 2018)
 - Extreme scenarios

14

Large-scale genomic evaluations

- Few organizations
- Methods available:
 - APY ssGBLUP (Misztal et al., 2014)
 - Indirect representations of G
 - ssGBLUP with SNP effect and GEBV (Legarra & Ducroq, 2012)
 - SSBR or Super Hybrid Model (Fernando et al., 2016)
 - Sherman-Woodbury inversions
 - SSGTBLUP (Mantysaari et al., 2017)

$$\mathbf{G}^{-1} = \mathbf{I} - \left(\mathbf{I} \mathbf{Z} \left(\mathbf{I} \mathbf{Z} \mathbf{Z} + \mathbf{I} \right)^{-1} \mathbf{Z} \mathbf{I} \right)$$

Comparisons

APY ssGBLUP vs. ssGTBLUP

APY ssGBLUP vs. Super Hybrid Model

Additional features in ssGBLUP

- Single-step outputs GEBV
- We need SNP effect as well
- Commercial products
 - e.g. GeneMax for non-registered animals
 - Based on SNP effects

26

Dataset

- AAA
 - 8.2M animals in pedigree
 - 6.2M BW
 - 6.8M WW
 - 3.4M PWG
 - 81k genotyped
 - born 1977-2012: 66k
 - born 2013-2014: 15k

- Complete
 - Phenotypes up to 2012
 - Genotypes up to 2014 (81k)
- Reduced
 - Phenotypes up to 2012
 - Genotypes up to 2012 (66k)
- 3-trait with mat and mpe
 - · Results for PWG

Additional features in ssGBLUP

- Interim evaluations
 - Indirect predictions
 - Quick evaluations between official runs
 - Should be comparable to GEBV

2.4

Problems with Indirect predictions

Genetic evaluation using single-step genomic best linear unbiased predictor in American Angus¹

D. A. L. Lourenco, *2 S. Tsuruta, * B. O. Fragomeni, * Y. Masuda, * I. Aguilar, †
A. Legarra, J. K. Bertrand, * T. S. Amen, * L. Wang, * D. W. Moser, * and I. Misztal *

© 2015 American Society of Animal Science. All rights reserved. J. Anim. Sci. 2015;93:2653–2662
doi:10.257/fas/2014.8836

 $COR(GEBV, \mathbf{Z}a) > 0.99$

 $Avg(GEBV) \approx 100$

 $Avg(\mathbf{Z}a) \approx 0$

How to make $\mathbf{Z}a$ compatible to GEBV?

33

How to make $\mathbf{Z}\hat{a}$ compatible to $\widehat{\text{GEBV}}$?

Understanding genetic and genomic bases

- Base of BLUP: founders of the pedigree
- Base of SSGBLUP: modelled as a mean for genotyped

•
$$p(\mathbf{u}_g) = N(\mathbf{1}\mu, \mathbf{G})$$

 $\mu = (\text{Pedigree base}) - (\text{Genomic base})$

Vitezica et al. (2011)

34

How to make $\mathbf{Z}\hat{a}$ compatible to $\widehat{\text{GEBV}}$?

- 1) Formula in Legarra (2017) $\boldsymbol{u}_{ip} = \mu + 0.95 \mathbf{Z}a + 0.05 \, \boldsymbol{u}_{p\,a\,r\,e\,n\,t\,s}$
- 2) Double fitting
 - a) fit a regression using genotyped animals in the evaluation

$$GEBV_{eval} = b_0 + b_1 \mathbf{Z}a$$

b) apply regression for indirectly predicted animals

$$\mathbf{u}_{in} = b_0 + b_1 \mathbf{Z}a$$

3) Add average GEBV

$$\mathbf{u}_{in} = \overline{GEBV}_{enal} + \mathbf{Z}a$$

APY ssGBLUP + Indirect Predictions

- Indirect predictions are unbiased after corrections
 - Average GEBV, double fitting or Legarra (2017)
 - · Can be used as interim evaluation
- Indirect Predictions and SNP effects can be calculated
 - \mathbf{G}_{APY}^{-1} or core \mathbf{G}^{-1}
- Investigating with 500k genotyped animals for all traits

Under development at UGA

- QCf90 (Masuda et al., 2018)
 - QC with bitwise operations
 - Works with raw or renumbered data
 - 570k genotyped for 61k SNP

Step	QCF90	PREGSF90
Computing time	917 sec.	2708 sec.
Memory usage	9 GB	257 GB

Under development at UGA

- PEV/PEC for SNP
 - Accuracy for Indirect Predictions
- Formulas to calculate SNP variance
- Multibreed evaluations
- Bias in genomic evaluations
- Dimensionality of genomic information
- Sequence data in ssGBLUP

38

Take Home

- Single-step is the new standard for beef cattle genomic evaluation
- All industries are moving to single-step
- Under constant improvement
- Scientists: keep improving and developing methods for more accurate evaluation
- Producers: keep collecting data
 - Phenotypes, pedigree, genotypes