1

Model-based Approaches to Improving Accuracy of Genetic Evaluations and Rewarding High Quality Data

R. Mark Thallman U.S. Meat Animal Research Center

USDA

"Things That Annoy Me About National Cattle Evaluation"

• The following slide is taken directly from a presentation I gave in this committee 4 years ago with the above title

JSDA

Motivation for the Topic

- Donnell Brown asked us to address some provocative questions about data quality, specifically with respect to contemporary group formation and weighing conditions.
 - Bob Weaber just addressed those issues
 - Part of Donnell's framing of the problem was an enumeration of things computers can't do.

I am going to propose some ways we could address Donnell's concerns through better genetic evaluation models

USDA

Why Don't We Reward Breeders for

Submitting High Quality Information?

- Breeders who submit high quality information could have higher accuracies.
- Those who do not or where there is evidence of bias could have lower accuracies and their animals EPDs could correspondingly be shrunken more
- toward the mid-parent mean.
- This could be done statistically as part of the evaluation.

How to Reward Breeders for <u>Submitting High Quality Data</u>

- Apply a lower residual variance to records submitted by breeders with evidence of high quality
 - This is a parameter in all genetic evaluations
 - It reflects the amount of random noise in the data
 - It is generally assumed the same for all records, regardless of source.
 - Not all evaluation software could accommodate heterogeneous residual variance, but it does not inherently increase the computational burden.

JSDA

What Would Rewards for Submitting High Quality Data Be?

- Higher accuracy EPDs for the same amount of information submitted.
- Greater influence than breeders with low quality on evaluations of animals used in multiple herds

JSDA

JSDA

Example

- Donnell made the excellent point that weighing conditions and variation in fill could significantly impact "environmental noise" (= residual variance).
 - Particularly relevant to weight traits.
 - Breeders who use better weighing conditions should have lower residual variance and should reap the benefit of higher accuracy

How Would Heterogeneous Residual Variance be Determined?

- Estimated directly on a per-breeder basis in the evaluation.
 - Improper contemporary group formation would be reflected here
- Possibly adjusted up or down based on indirect diagnostics
 - Would basically compare ranking based on within-herd with breed-wide ranking
 - These might have greater power to detect cheating
 - Lack of phenotypic variation, especially for birth weight
 - NOT based on subjective opinion of Breed Improvement Director

JSDA

Robust Prediction

- "Outliers" are shrunk toward the mean more than observations with residuals close to 0.
- While not intended to completely replace rule-based data edits, it could reduce reliance on them.

JSDA

Computational Feasibility

- Primary obstacle is whether the software used for genetic evaluation is designed to accommodate these models.
- Impact on computing time and memory requirements should not be excessive.

USDA

Fitting Weigh Order or Time in the Model

- Could adjust out some of the residual variance due to variation in fill.
 - Within group regression on time or order
- Could be easily accomplished by breeders who capture weights automatically from electronic scale and IDs.
- More important for larger contemporary groups.
 - Preferable to splitting calves from one pasture into arbitrary contemporary groups.

JSDA

Accommodating More Frequent Weights Through Use of Random Regression Model for Growth

- Use as many weights as are available and at whatever ages they were taken.
 - No edits for weights taken out of range.
- Predicts growth curves
- It is more computationally intensive than our current standard analyses of weight traits.

JSDA

Conclusions

- Accounting for data quality in genetic evaluations could improve accuracy of the resulting evaluations directly.
- The greater impact could be indirect, e.g. providing incentives for breeders to follow the practices Bob described to improve data quality.

