BreedObject: Breeding for Future Profitability

Brad Walmsley
Animal Genetics and Breeding Unit,
University of New England,
Armidale

- BreedObject
 - Selection Indexing system for BREEDPLAN
- BREEDPLAN
 - Multi-trait BLUP evaluation

- BreedObject
 - Selection Indexing system for BREEDPLAN
- BREEDPLAN
 - Multi-trait BLUP evaluation
- Large impact on profit (index)
 - \$1.79 / cow / year (1999-2004)
 - ~\$5.00 in leading herds

BreedObject

- Selection Indexing system for BREEDPLAN
- BREEDPLAN
 - Multi-trait BLUP evaluation
- Large impact on profit (index)
 - \$1.79 / cow / year (1999-2004)
 - ~\$5.00 in leading herds

Best herds over \$5.00 / cow / yr

Value of Genetic Improvement - South

 Banks 2015 Association for the Advancement of Animal Breeding and Genetics

- Change is constant
 - Markets & production systems evolve
 - Genetic change
 - Priorities move
 - New traits important
 - Etc

Always room for improvement

Objectives

Brief BreedObject History

BreedObject Developments

Plans for the Future

Brief BreedObject History

• Research began during 1980's, released 1990's

Approach

whole commercial production system

(birth to slaughter including cow herd)

Driving Force

Profit = Income – Costs

- Influenced by numerous traits to varying degrees
 - Can change between systems

What Impacts Profit?

whole commercial production system

(birth to slaughter including cow herd)

Barwick & Fuchs 1992 Animal Breeding – A modern approach
Barwick 2002 World Congress on Genetics Applied to Livestock Production

Predicting Feed Requirement

Corbett et al 1990

Diversity in Beef Industry

Trait	Range	
Fertility (weaning rate)	50%	98%
Calving Difficulties	0%	40%
Age @ 400kg	10 months	2 years
Cow Weight	400 kg	900 kg
Annual Death Rate	1%	20%
Heifer Retention Rate	20%	100%
Carcass Weight	150 kg	500 kg
Fat Non-compliance	0%	25%
Marble Score	0	10
Feed Costs	<\$100/t	>\$300/t

Objective Traits

Selection Criteria

Desirable to improve, impact profit

Measurable and related to objective

Objective Traits

Selection Criteria

Economics of Traits

Not everything is linear

- Some prices have optima's
 - Fat specifications
- Other pricings structures
 - Marble Score

Barwick & Henzell 2003 Association for the Advancement of Animal Breeding and Genetics

Brief BreedObject History

- Developed in the early 1980's, released 1990's
- Approach:
 - Whole commercial production system
 - Driven by Profit always included costs
 - Breeding Objective Desired to be improved, impact profit
 - Selection Criteria Can be measured and related to objective
 - Non-linear economic values

Todays Objectives

Brief BreedObject History

BreedObject Developments

Plans for the Future

New Features: BreedObject Version 6

- Inclusion of all feed costs NFI in objective (all breeds)
- NFI EBVs in Indexes (where available)

- Enhanced feedlot phase modelling for pasture-feedlot systems
- Enhanced cow weight valuing
- Cow condition score valuing

Growth curve - Previously

Growth curve - Previously

Cow Weight

Economic value encompasses

- feed for maintaining wt.
- feed for change in wt.
- return from surpl. cows
 (at const. other performance)

Cow feed costs have to be considered over:

whole year

(effect isn't constant)

&

whole lifetime

(a multiplier is involved)

Walmsley et al 2015 Association for the Advancement of Animal Breeding and Genetics

Annual Production Cycle

Cow Weight Pattern - Previously

Cow Weight Pattern - Previously

Cow weight change constant **throughout** the annual cycle

Cow Weight Pattern - Now

Cow weight change varies **throughout** the annual cycle

Cow Weight - Now

Cow Weight - Now

Cow Weight - Now

Cow Weight - Now

Cow B - - -

Cow Weight - Now

Age at Lowest Cow Condition Score

Cow Condition Score

Cow Feed Requirement

Cow Feed Requirement

~ 0.88 kg DM/day

Walmsley et al 2017 Association for the Advancement of Animal Breeding and Genetics

Cow/calf Feed Requirement

~ 1.52 kg DM/day

Walmsley et al 2017 Association for the Advancement of Animal Breeding and Genetics

Bull Rankings

Hereford Expected EBV Changes

New Features: BreedObject Version 6

Continued...

- Methane modelling
- Enhanced market specifications valuing
 - Non-linear for all traits, if appropriate

Wagyu Expected EBV Changes

New Features: BreedObject Version 6

Continued...

- Methane modelling
- Enhanced market specifications valuing
 - Non-linear for all traits, if appropriate

Culling effects via specific traits

Todays Objectives

Brief BreedObject History

BreedObject Developments

Plans for the Future

Future

- Redevelopment of the Feeding Standards
 - Work began 2019
 - Integration into indexes when complete

Across-breed indexes

• Will be driven by outputs from Repronomics and Southern

Multibreed projects

Future

"Indexes are complicated. 2 animals, same index, Different EBVs"

Alternatives:

Whole Indexes or Sub-indexes or Something else

Development of DeSireBull

Traditional Index

$$Index_W = b_1EBV_1 + b_2EBV_2 + ... + b_nEBV_n$$

Where:

b is the index weight (economic importance) & EBV is multi-trait BLUP EBVs, from traits 1 to n

Trait Sub-Groupings

Subgroup₁ =
$$b_1EBV_1 + b_2EBV_2$$

. . .

Subgroup_n =
$$b_m EBV_m + ... + b_n EBV_n$$

Sub-Grouping Example

Index_w =
$$1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55$$

$$SG_1 = 1 + 2 + 3 + 4 = 10$$
 $SG_2 = 5 + 6 + 7 = 18$
 $SG_3 = 8 + 9 + 10 = 27$

Carcass

$$Index_{SG} = SG_1 + SG_2 + SG_3 = 55 = Index_W$$

Sub-Grouping Options

Many grouping possibilities

•	Logical	Com	bina	tions
	_ 0			

- On-Farm
- Off-Farm

• Others???

Group	Trait
On-Farm	Calving Ease (D & M) Weaning Weight Maternal (Milk) Entry Weight Scrotal Size Weaning Rate Cow Weight Efficiency - postweaning
Off-Farm	Sale Weight Efficiency – finishing Dressing % Yield % Fatness Marbling

Scenario Testing

Genetic Change in Profitability

Genetic Change in Profitability

Genetic Change in Profitability

Learnings

For profitability gains:

Critical seedstock selection occurs using indexes

Some scope for commercial bull buyers to use sub-groups

Best result achieved using selection indexes

Acknowledgements

- Steve Barwick
- Anthony Henzell

- Laura Penrose
- Sam Clark

- David Johnston
- Rob Banks
- Matt Wolcott

Final Remarks

Demonstratable positive impacts on beef profitability

Better ability to describe commercial production realities

Future developments planned for greater utility

Key focus on "Commercial Profitability"

